

From Grids to Service and

Pervasive Computing

From Grids to Service and

Pervasive Computing

Edited by

Thierry Priol
IRISA/INRIA

Rennes, France

Marco Vanneschi
University of Pisa

Pisa, Italy

1 3

Editors:

Thierry Priol

IRISA / INRIA Rennes

Campus de Beaulieu

35042 Rennes CX

France

thierry.priol@irisa.fr

Marco Vanneschi

Università di Pisa

Dipto. Informatica

Largo Bruno Pontecorvo,3

56127 Pisa, Italy

vannesch@di.unipi.it

Library of Congress Control Number: 2008932324

ISBN-13: 978-0-387-09454-0 e-ISBN-13: 978-0-387-09455-7

 2008 Springer Science+Business Media, LLC.

All rights reserved. This work may not be translated or copied in whole or in part

without the written permission of the publisher (Springer Science+Business Media,

LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in

connection with reviews or scholarly analysis. Use in connection with any form of

information storage and retrieval, electronic adaptation, computer software, or by

similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar

terms, even if they are not identified as such, is not to be taken as an expression of

opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper.

springer.com

Contents

Foreword vii

Contributing Authors xiii

Part I Component Programming

Advances in autonomic components & services 3
Marco Aldinucci, Marco Danelutto, Giorgio Zoppi, Peter Kilpatrick

Behavioural Model of Component-based Grid Environments 19
Alessandro Basso, Alexander Bolotov, Vladimir Getov

Towards a Formal Semantics for Autonomic Components 31
Marco Aldinucci, Emilio Tuosto

Integrating Application and System Components with GCM 47

Part II Resource Management and Scheduling

Resource Availability Comparison and Prediction 63
Farrukh Nadeem, Radu Prodan, Thomas Fahringer, Vincent Keller

Online Hierarchical Job Scheduling on Grids 77
Andrei Tchernykh, Uwe Schwiegelshohn, Ramin Yahyapour, Nikolai Kuzjurin

Global Optimization for Scheduling Multiple Co-Reservations in the Grid 93
Thomas Röblitz

111
Javier Bustos Jimenez, Denis Caromel, Mario Leyton, Jose Miguel Piquer

A Markov Model for Fault-Tolerant Task Parallel Computations 123
Carlo Bertolli, Massimiliano Meneghin, Joaquim Gabarro

Part III Service Level Agreement and Self-*

Rosa M. Badia
Michal Ejdys, Ula Herman-Izycka, Namita Lal, Thilo Kielmann, Enric Tejedor,

Applications
Load Information Sharing Policies in Communication-Intensive Paralle

vi COREGRID SYMPOSIUM

Towards SLA-based Software Licenses 139
Jiadao Li, Oliver Wäldrich, Wolfgang Ziegler

Using SLA based Approach to handle Sabotage Tolerance in the Grids 153

Enabling self-management 163
Ahmad Al-Shishtawy, Joel Högl

SOC: Formalization and Design Pattern 175
Marco Pasquali, Patrizio Dazzi, Antonio Panciatici, Ranieri Baraglia

Part IV Grid Middleware

Trace-Based Characteristics of Grid Workflows 191

Core Services for Grid Markets 205
Pablo Chacin, Xavier Leon, Rene Brunner, Felix Freitag and Leandro Navarro

Mining@home: Public Resource Computing for Distributed Data Mining 217
D. Barbalace, C. Lucchese, C. Mastroianni, S. Orlando, D. Talia

HLA Component Based Environment for Distributed Multiscale Simulations 229
Katarzyna Rycerz, Marian Bubak, Peter M.A. Sloot

Author Index 241

Dominic Battré and Matthias Hovestadt, Karim Djemame
Syed Naqvi, StephaneMouton, PhilippeMassonet,Gheorghe Cosmin Silaghi,

Vladimir Vlassov, and Per Brand
und, Konstantin Popov, Nikos Parlavantzas,

and Dick Epema
Simon Ostermann, Radu Prodan, and Thomas Fahringer, Alexandru Iosup

Foreword

The symposium was organised by the Network of Excellence CoreGRID
funded by the European Commission under the sixth Framework Programme
IST-2003-2.3.2.8 starting September 1st, 2004 for a duration of four years.
CoreGRID aims at strengthening and advancing scientific and technological
excellence in the area of Grid and Peer-to-Peer technologies. To achieve this
objective, the network brings together a critical mass of well-established re-
searchers (155 permanent researchers and 168 PhD students) from forty six
institutions who have constructed an ambitious joint programme of activities.

The CoreGRID Symposium, organized jointly with the Euro-Par 2008 con-
ference, aims at being the premiere European event on Grid Computing for
the dissemination of the results from the European and member states initia-
tives, as well as other international projects in Grid research and technologies.
The 2007 Symposium reported important research results about next generation
Grids, P2P and other types of distributed technologies. The 2008 Symposium
emphasizes the evolution of such technologies towards advanced solutions that
favour the exploitation of Service and Pervasive Computing, in particular solu-
tions for programming environments and application development frameworks,
models for autonomic and self-organizing/managing components, complex re-
source management and scheduling strategies, SLA-based approaches, as well
as performance and cost models for significant application fields.

The final programme has been organized into four sessions:

1. Component Programming
2. Resource Management and Scheduling
3. Service Level Agreement and Self-*
4. Grid Middleware

In the first session, the component programming paradigm is investigated
from the viewpoints of both its semantics and its utilization in application
development platforms. (Basso, Bolotov, Getov) propose a formal automata
model for the specification of component-based Grid environments. (Ejdys,

viii COREGRID SYMPOSIUM

Herman-Izycka, Lal, Kielmann, Tejedor, Badia) discuss how the Grid Compo-
nent Model (GCM) of CoreGRID can be used to build mediator component-
based platforms. The autonomic features of the component paradigm are in-
vestigated in two papers: (Aldinucci, Tuosto) present a formal semantics to
model the dynamic evolution and non-functional issues, (Aldinucci, Danelutto,
Kilpatrick, Zoppi) introduce rule-based autonomic managers and apply such a
model to GCM-like skeletons, showing how this approach simplifies the design
of complex managers.

In theResource Management and Scheduling session, the paper by (Nadeem,
Prodan, Fahringer) presents new metrics for resource availability compari-
son and an availability predictor based on pattern matching. (Tchernykh,
Schwiegelshohn, Yahyapour, Kuzjurin) address the non-preemptive on-line par-
allel job scheduling according to a two-stage model. (Röblitz) extends previous
works on multiple co-reservations scheduling by developing a mixed integer lin-
ear programming model. (Bustos-Jimenez, Caromel, Leyton, Piquer) deal with
the management of communication-intensive parallel applications and com-
pare several load information sharing policies through experiments. The paper
by (Bertolli, Gabarro, Meneghin) presents a Markov model for predicting the
execution time of task parallel computation that adopt fault-tolerance Grid tech-
niques.

In the third session, SLA and self-*, two papers deal with the exploitation of
SLA-based techniques in security related issues: (Naqvi, Mouton, Massonet,
Cosmin Silaghi, Battré, Hovestadt, Djemame) show how SLA-based informa-

Wäldrich) discuss SLA-based software licences and licence management, refer-
ring to two models developed in BEinGRID and SmartLM European projects.
Self management approaches to application development are investigated in the
papers by (Al-Shishtawy, Hoglund, Popov, Parlavantzas, Vlassov, Brand) and
by (Pasquali, Dazzi, Panciatici, Baraglia): the former presents a component-
based framework with self-management features, the latter proposes a design
pattern for self-optimizing classification systems and validates the proposal in
a complex application.

The Grid Middleware session comprises research results aiming at the def-
inition and realization of Grid tools and/or frameworks. (Ostermann, Pro-
dan, Fahringer, Iosup, Epema) present a method and a tool for analyzing
workflow-based workload traces from the Austrian Grid, identifying some per-
formance features of typical workflow classes. (Chacin, León, Brunner, Freitag,
Navarro) present the Grid Market Middleware framework for the development
of market-based Grid systems. (Lucchese, Barbalace, Mastroianni, Orlando,
Talia) present a novel framework for the decomposition of a class of data mining
problems into independent task with intensive data-sharing. (Rycerz, Bubak,
Sloot) present a component-based framework for distributed multiscale simu-

tion exchange can favour a sabotage-tolerant system design, while (Ziegler, Li,

FOREWORD ix

lation according to the HLA approach, dealing with the problems of definition
and setting of connections in a simulation federation.

The Programme Committee who made the selection of papers included:

Arenas, A., STFC-RAL, UK
Badia, R., Barcelona Supercomputing Center, Spain
Bal, H., Vrije Universiteit, Amsterdam, The Netherlands
Banâtre, J-P., University of Rennes 1 / INRIA, France
Bubak, M., Inst. of Comp. Sci. and Cyfronet, Poland
Corcho, O. University of Manchester, UK
Cunha, J., New University of Lisbon, Portugal
Danelutto, M., University of Pisa, Italy
Desprez, F., INRIA, France
Fahringer, T., University of Innsbruck, Austria
Fragopoulou, V., Forth, Greece
Getov, V., University of Westminster, UK
Gorlatch, S., University of Muenster, Germany
Guisset, P., CETIC, Belgium
Kacsuk, P., SZTAKI, Hungary
Kranzlmueller, D., Joh. Kepler University Linz, Austria
Laforenza, D., ISTI-CNR, Italy
Laure, E., CERN, Switzerland
Lee, C., The Aerospace Corp., USA
Lee, J., KISTI, Korea
Lengauer, C., University of Passau, Germany
Luque, E., UAB, Spain
Matyska, L., Masaryk University, Czech Republic
Meyer, N., Poznan Supercomputing Center, Poland
Moreau, L., Univ. of Southampton, UK
Pasin, M., Universidade Federal de Santa Maria, Brasil
Perez, C., IRISA/INRIA, France
Perrott, R., Queen’s University of Belfast, UK
Piquer, J-M, University of Chile, Chile
Priol, T., IRISA/INRIA, France
Reinefeld, A., ZIB Berlin, Germany
Snelling, D., Fujitsu Laboratories of Europe, UK
Schwiegelshohn, U., University of Dortmund, Germany
Talia, D., Universita’ della Calabria, Italy
Varvarigou, T., NTUA, Greece
Yahyapour, R., University of Dortmund, Germany
Ziegler, W., Fraunhofer-Institute for Algorithms and Scientific Computing, Ger-

x COREGRID SYMPOSIUM

many

The Symposium Organising Committee included:

O. Vasselin, INRIA, Rennes, France
T. Priol, IRISA/INRIA, Rennes, France

FOREWORD xi

All papers in this volume were additionally reviewed by the following external
reviewers whose help we gratefully acknowledge:

Eduardo Argollo
Enric Tejedor
Jan Duennweber
Marek Wieczorek
Mikael Högqvist
Simon Ostermann
Thomas Roeblitz
Yvon Jégou

xii COREGRID SYMPOSIUM

Special thanks are due to the authors of all submitted papers, the members of
the Programme Committee and the Organising Committee, and to all reviewers,
for their contribution to the success of this event.

Las Palmas de Gran Canaria, Spain, August 2008

Dr. Thierry Priol and Prof. Marco Vanneschi (Symposium
Chairs)

Contributing Authors

Ahmad Al-Shishtawy Royal Institute of Technology, SE

Marco Aldinucci University of Pisa, IT

Rosa M. Badia Universitat Politècnica de Catalunya, ES

Ranieri Baraglia ISTI/CNR - Pisa , IT

Alessandro Basso University of Westminster, UK

Dominic Battré Technische Universität Berlin, DE

Carlo Bertolli University of Pisa, IT

Alexander Bolotov University of Westminster, UK

Per Brand Swedish Institute of Computer Science, SE

Rene Brunner Technical University of Catalonia, ES

Marian Bubak Institute of Computer Science, AGH, PL Academic Computer
Centre - CYFRONET, PL

Denis Caromel INRIA, FR

Pablo Chacin Technical University of Catalonia, ES

xiv COREGRID SYMPOSIUM

Gheorghe Cosmin Silaghi Babes.-Bolyai University of Cluj-Napoca, RO

Marco Danelutto University of Pisa, IT

Patrizio Dazzi IMT (Lucca Institute for Advanced Studies), IT ISTI/CNR -
Pisa, IT

Karim Djemame University of Leeds, UK

Michal Ejdys Vrije Universiteit, Amsterdam, NL

Dick Epema Delft University of Technology, NL

Thomas Fahringer University of Innsbruck, AT

Felix Freitag Technical University of Catalonia, ES

Joaquim Gabarro Universitat Politècnica de Catalunya„ ES

Vladimir Getov University of Westminster, UK

Ula Herman-Izycka Vrije Universiteit, Amsterdam, NL

Matthias Hovestadt Technische Universität Berlin, DE

Joel Höglund Swedish Institute of Computer Science (SICS), SE

Alexandru Iosup Delft University of Technology, NL

Javier Bustos Jimenez Universidad Diego Portales, CL

Vincent Keller Ecole Polytechnique Federale de Lausanne, LIN-STI, CH

Thilo Kielmann Vrije Universiteit, Amsterdam, NL

Contributing Authors xv

Peter Kilpatrick Queen’s University Belfast, UK

Nikolai Kuzjurin Institute of System Programming RAS, RU

Namita Lal Vrije Universiteit, Amsterdam, NL

Xavier Leon Technical University of Catalonia, ES

Mario Leyton INRIA, FR

Jiadao Li Fraunhofer Institute SCAI, DE

Philippe Massonet Centre of Excellence in Information and Communication
Technologies, BE

Massimiliano Meneghin University of Pisa, IT

Stephane Mouton Centre of Excellence in Information and Communication
Technologies, BE

Farrukh Nadeem University of Innsbruck, AT

Syed Naqvi Centre of Excellence in Information and Communication Tech-
nologies, BE

Leandro Navarro Technical University of Catalonia, ES

Simon Ostermann University of Innsbruck, AT

Antonio Panciatici Engineering PhD School “Leonardo da Vinci” - Pisa, IT

Nikos Parlavantzas INRIA, FR

Marco Pasquali IMT (Lucca Institute for Advanced Studies), IT ISTI/CNR -
Pisa, IT

xvi COREGRID SYMPOSIUM

Jose Miguel Piquer Universidad de Chile, CL

Konstantin Popov Swedish Institute of Computer Science, SE

Radu Prodan University of Innsbruck, AT

Katarzyna Rycerz Institute of Computer Science, AGH, PL

Thomas Röblitz Zuse Institute Berlin, DE

Uwe Schwiegelshohn Technische Universität Dortmund, DE

Peter M.A. Sloot University of Amsterdam, NL

Andrei Tchernykh CICESE Research Center, MX

Enric Tejedor Univ. Politècnica de Catalunya, ES

Emilio Tuosto University of Leicester, UK

Vladimir Vlassov Royal Institute of Technology, SE

Oliver Wäldrich Fraunhofer Institute SCAI, DE

Ramin Yahyapour Technische Universitäat Dortmund, DE

Wolfgang Ziegler Fraunhofer Institute SCAI, DE

Giorgio Zoppi University of Pisa, IT

I

COMPONENT PROGRAMMING

ADVANCES IN AUTONOMIC COMPONENTS
& SERVICES∗

Marco Aldinucci, Marco Danelutto, Giorgio Zoppi
Dept. Computer Science – Univ. Pisa

{aldinuc,marcod,zoppi}@di.unipi.it

Peter Kilpatrick
Dept. Computer Science – Queen’s Univ. Belfast

p.kilpatrick@qub.ac.uk

Abstract Hierarchical autonomic management of structured grid applications can be effi-
ciently implemented using production rule engines. Rules of the form “precondi-
tion→ action” can be used to model the behaviour of autonomic managers in such
a way that the autonomic control and the application management strategy are
kept separate. This simplifies the manager design as well as user customization
of autonomic manager policies.

We briefly introduce rule-based autonomic managers. Then we discuss an
implementation of a GCM-like behavioural skeleton – a composite component
modelling a standard parallelism exploitation pattern with its own autonomic
controller – in SCA/Tuscany. The implementation uses the JBoss rules engine
to provide an autonomic behavioural skeleton component and services to expose
the component functionality to the standard service framework. Performance
results are discussed and finally similarities and differences with respect to the
ProActive-based reference GCM implementation are discussed briefly.

Keywords: Behavioural skeletons, autonomic computing, Service Component Architecture,
task farm.

∗This research is carried out under the FP6 Network of Excellence CoreGRID and the FP6 GridCOMP
project funded by the European Commission (Contract IST-2002-004265 and FP6-034442).

4 COREGRID SYMPOSIUM

1. Introduction

Autonomic management is increasingly attracting attention as a means of
handling the non-functional aspects of grid applications. Several research
groups are investigating various ways to associate adaptive behaviour with dis-
tributed/grid programs [15, 19, 10, 18, 9].

Within the CoreGRID Programming Model Institute a component based grid
programming model is being developed (the Grid Component Model, GCM)
[12] which introduces the possibility of associating autonomic managers with
grid application components. GCM allows hierarchical composition of com-
ponents. This means that composite components can be perceived by the users
as normal, primitive components. Thus GCM system designers can capitalize
on composition to provide grid application programmers with composite com-
ponents that encapsulate common Grid programming patterns such as pipes,
farms, etc. [13]. Then, application programmers can simply use appropri-
ately parameterized instances of these composite components to implement
complete, efficient grid applications that exploit these patterns or nested ar-
rangements of them.

Autonomic managers have been introduced into GCM to take care of perfor-
mance concerns of composite components without requiring explicit/significant
application programmer involvement [12]. The combination of well-known
grid/distributed programming patterns together with an autonomic manager
taking care of the pattern performance is represented by the concept of a be-
havioural skeleton [4–5].

Autonomic management of typical grid programming patterns is a complex
activity per se. It requires the ability to monitor composite pattern execution,
suitable policies capable of handling “irregular” executions as perceived via the
monitoring activity and, last but not least, suitable mechanisms to implement
the corrective actions described within the policies and triggered in response to
monitoring of irregular execution activity.

Further complexity arises when the autonomic manager activities are not
considered in isolation but as a part of more global autonomic management
activities as happens when composite patterns are nested to model increasingly
complex grid applications. In this latter case, complex autonomic management
policies and strategies have to be identified that allow combination of the actions
performed by the single autonomic managers in the application in such a way
as to implement a more general, application-wide autonomic strategy.

In this work we build on previous work concerning behavioural skeletons
and hierarchical autonomic management in grid applications [6] and we define
a general principle that allows combination of autonomic behaviour of differ-
ent, nested behavioural skeletons in a single grid application (Sec. 2). Then we
discuss a prototype implementation de facto demonstrating the feasibility of the

Advances in autonomic components & services 5

approach. The prototype implementation is built on top of the Tuscany/SCA
(Service Component Architecture) [8] infrastructure rather than on top of the
existing reference implementation of GCM under development within the Grid-
COMP STREP project (Sec. 3). Finally, we outline how the whole methodology
based on autonomic management within behavioural skeletons can be exported
to plain service users. The result is a seamless integration of GCM behavioural
skeleton concepts into the SOA/WS framework (Sec. 4).

Figure 1: Sample behavioural skeleton structure.

2. Autonomic management using rules

We introduced autonomic managers enforcing user provided performance
contracts within a single behavioural skeleton in [4–5]. The performance con-
tracts enforced by behavioural skeletons currently include only service time
(basically the inverse of throughput) and constant parallelism degree (i.e. the
ability to keep constant the number of resources used to implement the appli-
cation, in the presence of (temporary or permanent) resource faults).

In this section we discuss hierarchical management of grid applications. In
particular, we make the assumptions used in [6] to discuss autonomic manage-
ment of grid applications, that is:

We assume that grid applications are developed using GCM components.

We assume that behavioural skeletons modelling common parallel pat-
terns are available. A behavioural skeleton is a parametric composite
component modelling a commonly useful, efficient parallel grid pattern
under the control of an internal autonomic manager responsible for guar-
anteeing a user-provided performance contract. Figure 1 outlines the
structure of a behavioural skeleton. In the behavioural skeleton ABC is
the Autonomic Behavioural Controller, the passive component responsi-
ble for providing probes for inspecting the status of a behavioural skeleton

6 COREGRID SYMPOSIUM

and mechanisms to implement autonomic actions. AM is the Autonomic
Manager, the active component responsible for behavioural skeleton au-
tonomic management (see [5] for a fuller description of both ABC and
AM in behavioural skeletons). The inner components are the ones man-
aged by the behavioural skeleton, in this case according to a functional
replication/data parallel pattern.

We assume that behavioural skeletons may be arbitrarily nested and there-
fore that a grid application can be abstracted as a skeleton tree. Each node
in the tree is labelled with the pattern represented by the corresponding
behavioural skeleton and each node has a number of descendant nodes
representing the functional parameters of the behavioural skeleton.

Figure 2: Sample application structure: component view (left) and skeleton view (right)

As an example, Fig. 2 depicts a grid application built as a three-stage pipeline.
The first stage pre-processes the input and the last post-processes the results.
The inner stage takes as input the output of the first stage and computes its
result in parallel as the programmer recognizes that this is a highly demanding
computation.

Autonomic managers in the behavioural skeleton components of the appli-
cation enforce a performance contract that can either be provided by the user
or agreed to by interacting AMs without any user intervention. For instance,
in the sample application of Fig. 2 the contract of C1, the top level pipeline
behavioural skeleton, is provided by the user, while the contracts of C2, C3 and
C4 are derived from the contract of C1 and sent to the corresponding managers
by the manager of C1.

Advances in autonomic components & services 7

Figure 3: Contract propagation

We summarize the autonomic contract management activities in our nested
behavioural skeleton context by the following abstract perspective, which was
partially developed in [6].

2.1 Abstract perspective

The application is represented by means of a skeleton tree, such as the one
of Fig. 2 right. The top level contract is provided by the application user,
using the appropriate non-functional interfaces/ports. Contracts of managers in
inner nodes come from parent nodes. The propagation of contracts from root to
leaves happens either at compile time or at run time, depending on when the user
provides the top level contract. In general, this is a non-trivial process. Sub-
contracts for the inner component managers can be determined from the contract
of the top level component manager only due to the fact that we are considering
behavioural skeletons, that is, we are limiting the form of parallelism exploited
within the top level component to a well known pattern. Figure 3 shows how
a pipeline manager propagates contracts to the inner stage managers (steps S.1
and S.2). In this case, the same contract of the pipeline manager is passed to
the stage managers, as pipeline service time is given by the maximum of the
stage component service times (TSpipeline = max{TSstage1

, . . . , TSstagen
}).

In the case of task farms, contract propagation is quite different. Farm service
time is given by the aggregate service time of the inner worker components.
In particular, in a farm with nw workers, the service time can be approximated
as TSfarm = (

∑nw
i=1 TSworkeri

)/nw
2. Therefore a farm manager propagates

to the worker components a null contract, basically stating worker components
should do their best to exploit the available resources and then the farm manager
will take care of ensuring the farm contract by varying the number of inner
worker components (see Fig. 3, step S.3).

Once the application has been started, and the contracts have been propagated
to the inner managers, the autonomic managers in the nodes determine whether
the current contract is satisfied and, if it is not, they start an autonomic corrective

8 COREGRID SYMPOSIUM

action aimed at enforcing once again contract satisfaction. In this abstract
perspective, verification of a contract basically requires three steps.

Step 1 The inner component autonomic managers are queried and the status of
their contracts is obtained. Each inner manager provides both a boolean
value (contract satisfied or not satisfied) together with a set of parameters
concerning its monitoring status (e.g. the measures used to evaluate the
contract, as provided by the component ABC). In this phase, the top level
manager behaves as a master with respect to the slave inner components
in the context of a monitor activity.

Step 2 The contract of the behavioural skeleton is evaluated making use of the
values given by the inner managers (monitor). These values are periodi-
cally used to instantiate variables in the terms of a formula that represent
the QoS contract (currently a first order logic formula). If the formula
evaluates to false the contract is considered broken; otherwise it is con-
sidered satisfied.

Step 3 If the local contract is no longer satisfied, either a local action is taken
aimed at reestablishing the existing contract or a failure is reported to
the manager of the parent behavioural skeleton in the skeleton tree. The
execution of a local action may involve distribution of new contracts to
the inner components, as well as changing the current configuration of
the behavioural skeleton component. The choice between performing
local actions and reporting failure is driven by the rules embedded in the
manager. These rules represent the AM knowledge base. Each rule is
composed of a precondition (if satisfied the rule can be used), an action
(if the rule is used the action states what steps have to be performed), a
cost (the overhead incurred if the rule is applied) and finally an expected
benefit (the benefit, in terms of the contract, that the AM can expect
following rule application) [6].

The rules considered in the Step 3 above are related to the performance
contract formulas. If the contract is violated, the formula representing the
contract itself can be analysed to derive (one or more) assignments of the
variables that may satisfy the formula and therefore the contract. Only variables
that are likely to be altered due to a reconfiguration plan are considered in this
process, and the plans suitably altering these variable values are considered for
execution. The execution of a reconfiguration plan by a manager may consist
in changing the assembly of inner components (e.g. adding a replica of a
component) and/or enforcing a new contract on some inner component (via its
manager). This corresponds to the inclusion in the AM knowledge base of a
rule that has as a precondition the formula modelling plan feasibility and as an
action the plan itself.

Advances in autonomic components & services 9

Figure 4: Sample inter-manager interactions: scenario 1

In the event that no plan is likely to induce the satisfaction of the formula
at some point in the future, a broken contact event has to be propagated to the
parent manager (to the user, if the top level AM is considered). This corresponds
to the inclusion in the AM knowledge base of a (lowest priority) rule that has no
precondition and has as action the report of the contract violation to the upper
level manager.

Notice that in the general case the co-ordination of management plans is
a difficult activity for several reasons. On the one hand, the satisfaction of a
contract cannot be always guaranteed by the satisfaction of all the contracts
of the inner components (for example, the interaction among components is
usually not captured by any of the inner contracts in isolation, and the expected
effect of reconfiguration plans is a forecast and its precision may be very coarse).
On the other hand, starting from a contract it is not always easy to split it into
sub-contracts (to be propagated to the inner components) in such a way that
satisfaction of sub-contracts is likely to satisfy the contract (in this regard we are
currently investigating an alternative logic that may easily support the projection
of contract formulas into sub-contract formulas [7]). The proposed approach
aims to ameliorate both problems via the behavioural skeleton concept since in
these parametric components the general structure of contracts (formulas and
plans) is pre-defined (up to parameterization).

2.2 Managers at work: sample scenarios

To illustrate how the whole process above works, consider again the appli-
cation of Fig. 2 and let us assume that the user has provided a service time
contract stating that service time should be less that k msecs (TSapplication =

10 COREGRID SYMPOSIUM

TSpipeline < k) and that contract propagation has already been performed as
shown in Fig. 3. Figures 4 and 5 illustrate some typical contract management
scenarios within related autonomic managers.

In the first scenario (Fig. 4) the pipeline manager requests from the inner
components the status of their contracts (this is the Step 1 in the abstract view
above, S.1 in the figure) and receives back two “contract satisfied” and one
“contract violation” responses (S.2). The contract violation (TS = k′ with
k′ > k) is raised by a sequential component manager (the manager of C4)
that has no way to improve the performance (service time) of the controlled
component. The pipeline manager has no means to ensure the user supplied
contract and therefore reports a contract violation to the user console (S.3).
If some “best effort” behaviour is requested by default, the pipeline manager
may propagate a new, less strict contract (TS < k′) to the inner stages, which
possibly results in the release of resources previously required by the inner
stages running with TS < k.

In the second scenario (Fig. 5) the farm manager has a TS < k contract and
requests contract values (service times) from the inner worker components (S.1).
It receives two values that together make its contract false (TS = (T ′

S+T ′′
S)/4 >

k (S.2)). A rule with precondition TSmonitored > TScontract and action “add
a fresh worker component instance” is applied (S.3). After the time needed
to implement the rule (as estimated by the farm manager), the contracts of the
inner components are monitored again (S.4, S.5) and this time the contract turns
out to be satisfied (S.6).

3. Prototype rule based autonomic management

A reference implementation of GCM is being developed on top of ProActive
middleware [17] in the framework of the GridCOMP project [16]. Here, be-
havioural skeletons and autonomic managers within behavioural skeletons are
implemented as described above. To date, however, the reference implementa-
tion of GCM does not explicitly use rules as described in Sec. 2. Rather, plain
Java code is used within the manager to implement the rule concept. This was
mainly due to implementation issues and the incremental nature of the design
and implementation of the behavioural skeleton concept.

Recently, we implemented a single behavioural skeleton (one modelling the
embarrassingly parallel computation pattern) on top of the Tuscany [3] SCA
framework [1]. We wished to implement the behavioural skeleton concept as
conceived in GCM without the restrictions and constraints of the ProActive-
based reference implementation. At the same time, we wished to export GCM
concepts to the service world and investigate the feasibility of implementing
them on top of services. Tuscany looked like a viable proposition, being an open
source component platform using state of the art, service based mechanisms.

Advances in autonomic components & services 11

Figure 5: Sample inter-manager interactions: scenario 2

The general design of the SCA implementation of the GCM task farm be-
havioural skeleton was introduced in [20, 14]; in the current work we ad-
dress in more detail the implementation of the rule-based autonomic manager.
SCA allows programmers to make use of the component concept in the ser-
vice framework. SCA components are perceived as plain services from the
user viewpoint. We therefore developed an SCA service (the WorkPoolSer-
vice) implementing a task farm behavioural skeleton according to the GCM
specification as introduced in Sec. 2. The Workpool Service is outlined in
Fig. 8. Two basic sets of services are provided: to submit tasks to be computed
(this is the service functional interface, WorkpoolService in the figure) and
to interact with the WorkpoolService manager (this is the non-functional one,
WorkpoolManagerService in the figure).

The autonomic manager (WorkpoolManager Component) uses JBoss Rules,
a “framework that provides an open source and standards-based business rules

12 COREGRID SYMPOSIUM

Figure 6: Autonomic cycle revisited

engine and business rules management system (BRMS) for easy business policy
access, change, and management” [2]. The JBoss engine supports dynamic
addition and removal of rules. The Drools Rule Language (DRL) implemented
in JBoss uses Java to express field constraints, functions, and consequences in
rules. In particular, Java beans are used to implement the getter methods needed
to access variable values and the methods implementing functions (actions) used
in the rules. A JBoss rule can be defined as a rule having a name, a condition
enabling its application and an action to be taken if that condition holds. An
example of a JBoss rule is the following:

rule "AdaptUsageFactor"
when $workerBean:WorkpoolBean(serviceTime > 0.25)
then $workerBean.addWorkerToLeastUsedNode();

end

The rule named “AdaptUsageFactor” can be used when the condition stating
that the managed component serviceTime is more than 0.25 holds and, in this
case, an addWorkerToLeastUsedNode is performed.

JBoss rules rely on the existence of a Java Bean (the one referenced by
$workerBean in the example) to access the required values (e.g. the service
Time instance variable of the bean) and then to implement the rule action
(e.g. to invoke the addWorkerToLeastUsedNode() method on the same
bean). To retain the possibility of using fully-fledged JBoss rules, we im-
plemented the WorkpoolManager component in such a way that it uses an
internal bean to support JBoss rules. The bean instance fields are set up period-
ically through the bean setter methods by the WorkpoolManager. In turn, the
WorkpoolManager retrieves the relevant data through the methods exposed via
the WorkpoolService interface. With respect to the GCM model (as outlined
in Fig. 1), these methods (services) correspond to the non-functional, passive
interface implemented by the ABC controller.

Advances in autonomic components & services 13

Our WorkpoolManager Component runs the JBoss rule engine. The rules
(such as the one given above) constitute the manager knowledge base (see Fig. 6)
and can be dynamically configured (added, deleted) through the Workpool
ManagerService non-functional interface. For example, rules in component
C3 of Fig 2 will be initially configured to include the sample rule shown above
if the user contract requires from C1 a service time of at most 0.25 secs. If the
C1 manager, while testing for contract integrity, discovers that the service time
provided by the task farm is higher than both Ts1 and Ts3 (the service times of
C1 and C3, respectively) it should interact with the C2 manager and send it a
new AdaptUsageFactor differing only in the when clause
when $workerBean:WorkpoolBean(serviceTime > max(TS1,TS2))

that will eventually substitute the old AdaptUsageFactor rule.
To date we have experimented only with the SCA behavioural skeleton im-

plementation alone (i.e. not in a behavioural skeleton nesting). However, the
mechanism discussed above enables manager interaction via the submission of
new contracts, in the form of rules. Submission of new rules can take place
either during Workpool startup, to implement the initial propagation of the
user-supplied top level contract, or at run time, during autonomic management
actions reconfiguring the inner components of the behavioural skeleton. The
mechanism has been proven effective by running a set of experiments that sepa-
rately measured the scalability of the Tuscany/SCA task farm behavioural skele-
ton, and the overhead introduced by a typical, single reconfiguration enacted by
its autonomic manager. We measured scalability of synthetic applications with
variable computational grain. The computational grain g = Tseq/Tcomm in out

is the ratio of the time spent to compute a task on the remote resource (Tseq), to
the time spent to deliver the input data to the remote node plus the time spent
to retrieve the results from the remote node (Tcomm in out). The definition of
scalability, S(n), is the classical one: S(n) = T (1)/T (n), where T (n) repre-
sents the completion time of the application run with parallelism degree equal
to n. Typical results are shown in Fig. 7 (left). Considering the high overhead
in serializing (deserializing) service parameters with SOAP XML (we used no
optimization), this represents a fairly good result.

Concerning the overhead related to reconfiguration of the behavioural skele-
ton, we measured the time spent in computing a set of 1K tasks, including a
forced reconfiguration that doubled the number of farm workers (4 → 8) when
a given number of tasks had already been computed. The results are shown in
Fig. 7 (right). The Exp1 (Exp2) line refers to an experiment where the workers
were doubled after half (quarter) of the tasks were computed. In both cases the
overhead involved is negligible, considering it includes both the time spent to
activate (upon a timer) the JBoss rule engine and the time spent to perform the
“add worker” rule four times.

14 COREGRID SYMPOSIUM

Figure 7: Scalability (left) and reconfiguration (right) efficiency results.

4. Behavioural skeletons in SCA and interoperability

As stated at the beginning of Sec. 3, our implementation of GCM behavioural
skeletons on top of SCA was also aimed at demonstrating the suitability of SCA
to support GCM concepts and the interoperability we were able to achieve with
the wider (i.e. beyond the GCM and grid community) service world.

SCA offers most of the mechanisms needed to implement a GCM behavioural
skeleton. One facility missing is the means to change composite component as-
semblies at run time via XML composite component descriptors. For instance,
when a new worker component has to be added to the WorkpoolService,
we cannot simply produce a new composite descriptor to tell the framework
the composite assembly has changed. Consequently, we implemented a com-
ponent to deal with this kind of assembly change. The component provides
means to instantiate a new (worker) component and to create the appropriate
connections as defined by the schema of Fig. 8. The component uses the
Tuscany API which, in turn, provides the mechanisms required to support new
component integration with (as well as old component removal from) a compo-
nent assembly. The SCA implementation of the task farm behavioural skeleton
directly mirrors the GCM/ProActive implementation. The GCM/ProActive
ABC is implemented via operations exported by the Workpool Service and the
AM is implemented by the SCA component WorkpoolManager Service. All
the components in Fig. 8 (the WorkpoolService, the WorkpoolManager, the
WorkerManagerNode and the WorkerService) are exposed as services. They
can be accessed through the automatically generated WSDL as plain services
and, more importantly, they can be re-used to implement different behavioural
skeletons in exactly the same way that the ABC and AM components may be
re-used within the GCM/ProActive framework to implement other behavioural
skeletons.

The overall design of the Workpool service (and of the associated support
mechanisms) has been judged interesting by the Tuscany developers and our
code has been included in the SCA svn as a Tuscany sample application.

Concerning interoperability, we verified that accessing a behavioural skele-
ton is as easy as accessing any other type of service on the network, as expected.

Advances in autonomic components & services 15

Figure 8: Workpool Service structure

Fig. 9 sketches the code needed to submit tasks to the WorkpoolService be-
havioural skeleton. The first part of the code (on the left) is that needed to set up
a reference to the service (args[0] is the url of the service WSDL file). Here a
service that will be invoked to post-process the results produced is passed to the
WorkpoolService. The second part of the code (on the right) is that needed
to submit the single task (in a Job) to the WorkpoolService. This code is of
the same form as that required to access any other type of service from a Java
program. Normal service application programmers require no additional effort
to benefit from the advanced management supported in the WorkpoolService.
Thus our implementation satisfies the requirement to propagate the concept with
minimal disruption as stated by Murray Cole in his skeleton “manifesto” [11].
Service users may have the benefit of a fully-fledged autonomic implementation
of embarrassingly parallel computations within a single service incorporating
the best of the relevant GCM methodology and concepts.

5. Conclusions

We introduced rule-based autonomic management techniques for structured
grid applications implemented using GCM Behavioural Skeletons. The general
mechanism of rule exploitation for performance contract monitoring together
with a significant sample case have been discussed. We then described a proto-
type implementation in SCA/Tuscany. We presented preliminary experimental
results demonstrating the feasibility of the approach as well as the portability

16 COREGRID SYMPOSIUM

Figure 9: Sample client code for the WorkpoolService

of GCM autonomic management aspects into the Service framework. The pro-
totype implementation makes available a GCM task farm behavioural skeleton
to service application programmers and thus helps broaden the applicability of
CoreGRID results. As the intended target audience of the prototype is the ser-
vice community, this also makes a bridge between the component and service
worlds. The design of the prototype, fully exploiting component technology,
allows reuse of its different parts to implement different behavioural skele-
tons. We are currently integrating the rule based implementation of behavioural
skeletons into the GCM reference implementation being developed on top of
ProActive in the GridCOMP project.

References

[1] Service component architecture, 2007. http://www.ibm.com/developerworks/
library/specification/ws-sca/.

[2] Jboss rules home page, 2008. http://www.jboss.com/products/rules.

[3] Tuscany home page, 2008. http://incubator.apache.org/tuscany/.

Advances in autonomic components & services 17

[4] M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi, P. Kilpatrick, D. Laforenza, and N. Tonel-
lotto. Behavioural skeletons for component autonomic management on grids. In Core-
GRID Workshop on Grid Programming Model, Grid and P2P Systems Architecture, Grid
Systems, Tools and Environments, Heraklion, Crete, Greece, June 2007.

[5] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Dazzi, D. Laforenza, N. Tonel-
lotto, and P. Kilpatrick. Behavioural skeletons in GCM: autonomic management of grid
components. In Proc. of Intl. Euromicro PDP 2008: Parallel Distributed and network-
based Processing, Toulouse, France, pages 54-63, Feb. 2008. IEEE.

[6] M. Aldinucci, M. Danelutto, and P. Kilpatrick. Towards hierarchical management of au-
tonomic components: a case study. Technical Report TR-0127, CoreGRID, 2008. Avail-
able at http://www.coregrid.net/mambo/images/stories/TechnicalReports/
tr-0127.pdf.

[7] S. Bistarelli, U. Montanari, F. Rossi, Semiring-Based Constraint Logic Programming:
Syntax and Semantics, ACM TOPLAS, Vol. 23, 2001

[8] M. Beisiegel, H. Blohm, D. Booz et al. Service Component Architecture Building Sys-
tems using a Service Oriented Architecture, A Joint Whitepaper by BEA, IBM, Inter-
face21, IONA, Oracle, SAP, Siebel, Sybase. 2000, available at http://www.iona.com/
devcenter/sca/SCA_White_Paper1_09.pdf

[9] P. Boinot, R. Marlet, J. Noyé, G. Muller, and C. Cosell. A declarative approach for
designing and developing adaptive components. In Proc. of the 15th Intl. Conference on
Automated Software Engineering, pages 111–119. IEEE, 2000.

[10] J. Buisson, F. André, and J.-L. Pazat. Afpac: Enforcing consistency during the adaptation
of a parallel component. Scalable Computing: Practice and Experience, 7(3):83–95, 2006

[11] M. Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel
programming. Parallel Computing, 30(3):389–406, 2004.

[12] CoreGRID NoE deliverable series, Prog. Model Institute. D.PM.04 – Basic Features
of the Grid Component Model (assessed), Feb. 2007. http://www.coregrid.net/
mambo/images/stories/Deliverables/d.pm.04.pdf.

[13] CoreGRID NoE deliverable series, Prog. Model Institute.D.PM.11 –GCMexperience: in-
side the single component and beyond components, Feb. 2008. http://www.coregrid.
net/mambo/content/view/428/292/.

[14] M. Danelutto and G. Zoppi. Behavioural skeletons meeting Services. In Proceedings of
PAPP’08. Springer Verlag, LNCS No. 5101, pages 146–153, June 2008. Krakow, Poland.

[15] H. González-Vélez. Self-adaptive skeletal task farm for computational grids. Parallel
Comput., 32(7):479–490, 2006.

[16] GridCOMP. GridCOMP web page, 2007. http://gridcomp.ercim.org.

[17] ProActive home page, 2006. http://www-sop.inria.fr/oasis/proactive/.

[18] S. S. Vadhiyar and J. J. Dongarra. Self adaptivity in grid computing: Research articles.
Concurr. Comput. : Pract. Exper., 17(2-4):235–257, 2005.

[19] G. Wrzesinska, J. Maassen, and H. E. Bal. Self-adaptive applications on the grid. InPPoPP
’07: Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 121–129, New York, NY, USA, 2007. ACM.

[20] G. Zoppi. Componenti Avanzati GCM/SCA, 2008. Dept. Computer Science, Univ. of
Pisa. 2nd level graduation thesis, in Italian. http://etd.adm.unipi.it/theses/
available/etd-01302008-103715/

BEHAVIOURAL MODEL OF COMPONENT-BASED
GRID ENVIRONMENTS

Alessandro Basso, Alexander Bolotov, Vladimir Getov
Harrow School of Computer Science
University of Westminster
Watford Road, Northwick Park
Harrow HA1 3TP, London, U.K.

[bassoa.bolotoa,v.s.getov]@wmin.ac.uk

Abstract In component-based Grid environments, we analyse the problem of formal spec-
ification of their behaviour by introducing an automata-based model. We show
how to construct this new framework from the analysis of states of components
and how to apply it to a reconfiguration scenario in a dynamic distributed system
environment. We aim at building a framework for future integration of these
developments in a software tool for runtime automated specification and verifi-
cation, ensuring a reliable dynamically reconfigurable component model.

Keywords: GCM, Grid IDE, Reconfiguration, Temporal Deontic Specification, Dynamic
Verification.

20 COREGRID SYMPOSIUM

1. Introduction

Component models enable modular design of software applications that can
be easily reused and combined, ensuring greater reliability. This is important in
distributed systems where asynchronous components must be taken into consid-
eration, especially when there is need for reliable dynamic reconfiguration. In
these models, components interact together by being bound through interfaces,
however, there is a further need for a method which ensures correct composition
and behaviour of components and their interaction with the environment.

Fractal [9] is a modular and extensible component model. The Fractal specifi-
cation defines the Life Cycle controller interface as [8]: “A component interface
to control the lifecycle of the component to which it belongs. The lifecycle of
a component is supposed to be an automaton, whose states represent execution
states of the component. This interface corresponds to an automaton with two
states called STARTED and STOPPED, where all the four possible transitions
are allowed. It is however possible to define completely different lifecycle con-
troller Java interfaces to use completely different automatons, or to define sub
interfaces of this interface to define automatons based on this one, but with
more states and more transitions. A great number of component models in fact
consider by default a number of substates to the most generic STARTED state,
allowing for a deeper introspection on the behaviour of states of components
(initialized, suspended, failed. . .).

The Grid Component model (GCM) [13] is an extension of Fractal built to
accommodate requirements in distributed systems, in particular, those devel-
oped within and following the CoreGRID [12] project. The GCM specification
defines a set of notions characterising this model, an API (Application Program
Interface), and an ADL (Architecture Description Language) [4]. In Fractal,
when changing the bindings of a component, this component must be stopped (in
other words, to avoid disruption to the system, when unplugging a component,
such component must be stopped before severing its connections to other com-
ponents); at the same time, invocation on controller interfaces must be enabled
when a component is stopped (in order to send the stop signal to the component),
making de facto impossible to reconfigure the component controller. In GCM
section 8.1 of [13], the life-cycle controller is extended allowing to separate
partially the life-cycle states of the controller and of the content. When a com-
ponent is functionally stopped (which corresponds to the stopped state of the
Fractal specification), invocation on controller interfaces are enabled and the
content of the component can be reconfigured. When a component is stopped,
only the controllers necessary for configuration are still active (mainly binding,
content, and lifecycle controllers), and the other components in the membrane
can be reconfigured. We can make use of this extended capabilities and monitor
the changes in states of components.

Behavioural Model of Component-based Grid Environments 21

The recent development of a Grid Integrated Development Environment
(GIDE) based on the GCM specification [3] opens new possibilities for the
dynamic reconfiguration scenario in large distributed systems. We are able to
take advantage of pre-built components in the GIDE (namely the component’s
hierarchical composition, their API, and the monitoring of both components
and resources) to form a basis for a reconfiguration framework which exploits
the underlying properties of the specification language and deductive reasoning
verification methods used in our research. We consider the monitoring specifi-
cation of [10] and the state information that can be retrieved through calls to the
LifeCycleController interface (getFcState operation) for components, as
well as other monitoring techniques for the environment.

The rest of this paper is organised as follows. In §2 we give some basic
information on behaviour of stateful components/resources (§2.1), analyze the
limitations of ADLs (§2.2) and the environment monitoring techniques which
we utilize (§2.3). Further, in §3 we introduce the automaton model used for
formal specification, detailing the component level automata in (§3.1) and the
environment level one in (§3.2). In (§4.1) we outline the Specification process
and its usage for reconfiguration purposes is introduced in (§4.2). Finally, we
give some concluding remarks and identify future work in §5.

2. Background

2.1 Behaviour of stateful components/resources

The basic lifecycle of components, and thus the resources being managed,
can be retrieved at runtime by the use of the Component Monitoring and Re-
sources Monitoring systems, built in the GIDE, through: components state
calls (implemented by all component objects), specialised parameters monitor-
ing for some specific components, resources availability monitors and others.
This state system is often restricted, in that it supports the deployment processes
used by the framework and models only the deployment state of the system, not
its operational characteristics. Each deployment component independently rep-
resents the state of the deployed resource which it is managing. The system as
a whole must also represent a reasonable depiction of the overall state of many
components. The core lifecycle is defined by the states, allowed transitions and
operations shown in Figure 1.

As a component is such that it conforms to a set of defined states, and to the
GCM, we can therefore consider composite components as components that
inherit the same properties and conform to state composition. The analysis of
the components’ instances becomes now crucial. When a component is in the
instance state, this component (and all its requirements) will be deployed to
the appropriate system, and any operations will be performed that are part of
the components instantiation process. This state also presumes that whatever

22 COREGRID SYMPOSIUM

Figure 1: Component’s Lifecycle States

activation is required in order for the resource handler of the component to
be valid has been performed (we will leave the detailed requirements for the
resource monitoring system after more research into the effect of distributed
properties at resource level). As shown in the diagram, the initialize and destroy
state change commands are supported in this state. The component will then
move to initialization, where it will wait until a call is made to run; passing on
to the runtime state, which indicates that the services provided by the resources
that are being deployed are available for use. This state does not indicate any
information regarding the operational capabilities of the service, only that it
has completed initialization and not failed. At any time, state actions may not
complete correctly or the service itself may fail. In response to these failures, the
component will transition to the fail state. The component may remain active in
the system, but its managed resource is presumed to no longer be operational.
Once the component is running or has failed it should either eventually or
immediately terminated to stop its services. The terminated state represents
a state where a component is no longer running and cannot be returned to the
running state without redeployment. This state, however, does not eliminate
the resource from the system. Upon invocation of the destroy command, the
component’s corresponding resource will be freed. In a system with multiple
components, the lifecycle of the whole system is defined by the relationships
between the individual component lifecycles. The state of each component
is bound to the state of the components it relies on. The hierarchy of the

Behavioural Model of Component-based Grid Environments 23

system defines relationships where related components lifecycles are linked.
The component model and the ADL specification help define explicit semantics
for guiding lifecycle transitions.

2.1.1 Suspended state. Further analysis should be considered into the
runtime state above. We consider a special state in which the components
my be transitioning to and from the running state. In this particular state,
called the suspended state, special attention has to be made to the states of
the resources relative to the component in question (ie. the resources may
be released while a component is a suspended state). These properties help
refine the way components and relative resources are handled in respect to their
stateful behaviour.

2.1.2 Wait state. The case of the wait state is a very particular one. This
particular case is often referred to when a component is ready to receive the
input required for continuing its process (although some other special cases
could arise depending on the specific component). This state is often fallen
back into the more generic runtime state, since resources are not released by
the component although they may not even be “used” (ex. the component may
be deployed on a node but not utilizing the processing power). We are currently
forced to consider this state as a particular case of runtime state as there are
no implemented ways to monitor this situation through the lifecycle controller.

2.2 The ADL limitations

It is well known that Architecture Description Languages (ADLs) generally
cannot provide sufficient insight into the post-deployment / runtime reconfigu-
ration [14]; although they can be used to describe components, connectors and
configurations as well as the hierarchical structure of the system. We have to
therefore rely on specific characteristics about the states of instantiated com-
ponents (also known as “live components”) using standard runtime monitoring
tools. We can retrieve the specific state information (described in the previous
section) as messages passed to the system thus describing the runtime behaviour
of states of the component. Similarly, the overall view of behaviour of states of
the components’ system and resources, describes the runtime behaviour of the
environment. We use “finite state on finite strings automata” for the former and
“infinite state automata” for the latter, for our runtime behaviour specification.

2.3 Environment Monitoring

When considering the state of components and resources in a GCM model,
and the runtime monitoring of the environment, we analyse the following in-
trospections.

24 COREGRID SYMPOSIUM

For components, by accessing the LifeCycleController interface we
are able to know the state of the requested component (namely Started
and Stopped).

For resources, we can monitor their availability status as long as these
resources are specified during composition by some deployment descrip-
tor, or at runtime some metadata provider. As the former is mandatory
when using some specific components [1], it is not mandatory for all. We
will assume that if the developer is interested in using this formal spec-
ification for safe reconfiguration of components, he will provide some
accessibility to metadata information on runtime availability (as well as
list of required resources for the corresponding components), which can
be monitored at runtime.

3. Automata Based Model

In building our specification protocol, we follow well known automata con-
structions. We take a simple finite state automaton on finite strings, for the
components specification, and a more complex infinite state on finite strings
automata to define the environment. The automata at component level are used
for the creation of labels defining the various states in which the considered
component is, and are then fed upon request on to the various states of the
automata at environment level (Figure 2).

Figure 2: Automata Based Model

Behavioural Model of Component-based Grid Environments 25

3.1 Component level automata

For a component level automaton we suggest to use a finite automaton on
finite words. Let Σ be a finite alphabet. A finite word over Σ is an element of
Σ�.

Definition 1 (Finite Word Automaton) Afinitewordautomaton,A,
is a tuple A = (Σ, Q,Qi, Qf ,Δ) where Σ is a finite alphabet, Q is a set of
states, Qi ⊆ Q is a set of initial states, Qf ⊆ Q is a set of accepting states,
and Δ : Q × Σ −→ 2S is a transition function.

A run, R, of A over a word w = a1, a2, . . . , an−1, w ∈ Σ� is abbreviated as
Rw and it is a sequence of states s1, s2, . . . , sn such that for any i, (0 ≤ i < n),
si+1 ∈ Δ(si, ai). A run, R = s1, s2, . . . , sn, is successful if s1 ∈ Qi and
sn ∈ Qf . We say that an automaton A accepts a word w if it has a successful
run Rw. In this case we also say that an automaton A is not empty.

When we construct such an automaton at the component level, we would
call it Ac and we assume the following:

Initial states, Qi, are either ’running / waiting’ or none of the previous;

The set of states, Q, corresponds to the states of the component as defined
in the previous section;

The acceptance condition is defined as reaching of one of the following
states: terminated, suspended state or fail. These states are in the set Qf

and the acceptance condition is to reach one of these states in Qf

The transition conditions are determined by the state change calls of the
component.

When the assumed automaton Ac (non-)emptiness procedure establishes that
the automaton is not empty, it returns a successful run of Ac. Thus, for any
component cycle, when the corresponding automaton has an accepting run, it
means that a component is in the one of the accepting states. We would define
a simple function Lab(Ac) which returns the following parameters:

< at > - when a component has met the acceptance condition “terminate”

< as > - when a component a has met the acceptance condition “sus-
pended”

< af > - when a component has met the acceptance condition “terminate
after going through fail state”

< ¬a > - when component a has not met any acceptance condition

26 COREGRID SYMPOSIUM

These parameters generated by the function Lab(Ac) will be subsequently
passed to the environmental level automata which is described in the next sec-
tion.

3.2 Environment level automata

For the environment level we consider automata on infinite trees. Namely,
we consider Buchi tree automata [16]which is an extension of the standard tree
automaton accepting infinite trees.

Definition 2 (Infinite Tree Automaton) A Buchi Tree automaton
AT =< Σ,D, S,M, s0, Qf >, where Σ is an alphabet, D ⊂ N is a finite
set of branching degrees, M : S × Σ × D −→ 2S∗

is a transition function
satisfying M(s, σ, d) ∈ Sd, for every s ∈ S,σ ∈ Σ, and d ∈ D, s0 is an initial
state, and Qf ⊆ S is an acceptance condition.

A run, R, of AT over a tree τ abbreviated as Rτ is an infinite tree. A run,
Rτ , is successful if there is a state sf ∈ Qf such that Rτ hits sf infinitely often.
We say that an automaton AT accepts a tree τ if it has a successful run Rτ . In
this case we also say that an automaton AT is not empty.

In the construction of this tree automaton, every state is labelled according
to state of components (passed over from the component level automaton) and
resources. In this case the transition function is not only related to the state
transition of components, but is also tightly bound to the deontic logic accessi-
bility relation. Here we expect that we would be able to specify the automaton
in the normal form for CTL, SNFCTL, developed in our previous papers [5].
Although we do not have a rigorous proof of this, we can anticipate that the
situation here would be similar to the one in the linear-time case. Namely, in
[6], it was shown that a Buchi word automaton can be represented in terms of
SNFPLTL, a normal form for PLTL. Similarly, we expect that we will be able
to represent a Buchi tree automaton in terms of SNFCTL. Subsequently, we
enrich this representation of the automaton by deontic constraints [2] and apply
a resolution based verification technique as a verification procedure.

4. Runtime Reconfiguration

4.1 Systems States
Each deployment component must expose a state resource property which

implements the Component’s Monitoring capability. To satisfy this require-
ment, a deployment component must contain States and State Transition el-
ements. Additionally, a deployment component may include additional infor-
mation as an opaque quantity that an external consumer may be able to process.
The Component Status property will be exposed by every component object
of a system.
We can define these properties in the XML based system architecture as:

Behavioural Model of Component-based Grid Environments 27

<ComponentStatus>
<State>InstanceState|InitializationState|RuntimeState|
SuspendedState|FailedState|TerminatedState</State>
<LifecycleTransition>StateTransition</LifecycleTransition>
</ComponentStatus>

where:

Element
InstanceState
InitializationState
RuntimeState
SuspendedState
FailedState

TerminatedState

Description
State representing the presence of a component instance.
State in which a component has been properly initialized.
Operational state.
Operational state (in suspension).
State in which the component has failed either a lifecycle
operation or its operation has failed.
State in which a component instance has been terminated.

As the failed state may have been arrived at due to failures during many parts
of the lifecycle, it is recommended that the component take action to ensure
the services of the resources are not available while in this state, particularly if
the transition occurred from the running state.

Similarly, we can map the state of resources and monitor changes through
state change notifications fired by resource monitoring software implemented
in the GIDE.

4.2 Formal Specification

We refer to reconfiguration as to the process through which a system halts
operation under its current source specification and begins operation under a
different target specification [15], and more precisely, after the deployment has
taken place (dynamic reconfiguration). Some examples include the replace-
ment of a software component by the user, or an automated healing process
activated by the system itself. In either of these cases we consider the dynamic
reconfiguration process as an unforeseen action at development time (known as
ad-hoc reconfiguration [7]). When the system is deployed, the verification pro-
cess should run continuously and the system will report back the current states
for model mapping; if a reconfiguration procedure is requested or inconsistency
detected, the healing process is triggered. The dynamic reconfiguration process
works in a recursive way, constantly checking for update requests to the model
and taking actions accordingly, enabling us to achieve an automated runtime
reconfiguration through cycling deductive verification. The approach here is to
specify general invariants for the infrastructure and to accept any change to the
system, as long as these invariants hold. We assume that the infrastructure has
some pre-defined set of norms which define the constraints for the system, in or-

28 COREGRID SYMPOSIUM

der to ensure system safety, mission success, or other crucial system properties
which are critical to the system.

Application scenario. We could use this type of specification to construct
a normative framework for reconfiguration where a model is requested to be
updated. Once an automaton at the bottom level is constructed, it feeds the
upper layer automaton with the labels for the states. Then this upper layer au-
tomaton can be checked by given its presentation in the normal form with the
subsequent application of the resolution procedure to the derived specification.
Once this process has been carried out, we could use it for reconfiguration;
when a request for reconfiguration is received, we can consider it as an update
to the model, which is carried out by verifying the new specification against the
system one, stopping the components in question (in essence modifying their
state) and updating the model. The reconfiguration process is then left in the
hands of the resource handler and the components can be started again to carry
on their task with the updated model.

5. Conclusions

The need for a safe and reliable way to dynamically reconfigure systems
at runtime, especially distributed, resource-depending and long-running, has
led to the need for a formal way to describe and verify them before risking to
take some action. In this paper we have given a novel approach to the formal
specification of behaviour in GCM environments. Furthermore, by defining
our automata-based approach, we have laid the grounds for a solid prototyping
of such a specification system. The method introduced will be used to prevent
inconsistency and suggest corrections to the system in a static and/or dynamic
environment during reconfiguration procedures. Indeed, if the verification tech-
nique discovers inconsistencies in the configuration then the “healing” process
is triggered: the process of “reconfiguring” of the computation tree model that
conforms the protocol. As a next step, we are planning to embed all these
features in a prototype plug-in for the GridComp GIDE and test it on case stud-
ies proposed by industry partners. While we have applied this framework to
a GCM system, such procedure could be applied to other systems, giving the
deductive reasoning a chance to assist other verification methods such as model
checking by filling the gaps in those areas where these other well established
methods cannot be used.

Acknowledgement

This research work was carried out under the FP6 network of excellence
CoreGRID (Contract IST-2002-004265) and the FP6 research and develop-

Behavioural Model of Component-based Grid Environments 29

ment project GridCOMP (Contract IST-2005-034442) funded partially by the
European Commission.

References

[1] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Kilpatrick, P. Dazzi, D. Laforenza,
N. Tonellotto. Behavioural Skeletons in GCM: Autonomic Management of Grid Components
PDP ’08: Proc. 16th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, pp. 54-63, 2008.

[2] A. Basso and A. Bolotov. Towards GCM reconfiguration - extending specification by norms.
To appear in: CoreGRID Springer Volume of the CoreGRID Workshop at Heraklion, June
2007.

[3] A. Basukoski, V. Getov, J. Thiyagalingam, S. Isaiadis. Component-Based Development
Environment for Grid Systems: Design and Implementation Making Grids Work, Springer,
2008 (to appear).

[4] T. Barros, L. Henrio, A. Cansado, E. Madelaine, M. Morel, V. Mencl and F. Plasil Extension
of the Fractal ADL for the Specification of Behaviours of Distributed Components Accepted
for poster presentation at the 5th Fractal Workshop (part of ECOOP’06), July 3rd, 2006,
Nantes, France, Jul 2006.

[5] A. Bolotov and M. Fisher. A Clausal Resolution Method for CTL Branching Time Temporal
Logic Journal of Experimental and Theoretical Artificial Intelligence, volume 11, 1999, pages
77-93, Taylor & Francis.

[6] A. Bolotov, C.Dixon and M. Fisher. On the Relationship between Normal Form and w-
automata (with M.Fisher and C.Dixon). Journal of Logic and Computation, Volume 12,
Issue 4, August 2002, pp. 561-581, Oxford University Press.

[7] T. Batista, A. Joolia, and G. Coulson. Managing Dynamic Reconfiguration in Component-
based Systems Proceedings of the European Workshop on Software Architectures, June,
2005, Springer-Velag LNCS series, Vol 3527, pp 1-18.

[8] E. Bruneton. Fractal - Tutorial. Electronic resource:
http://fractal.objectweb.org/tutorials/fractal/index.html. September 2003.

[9] E. Bruneton, T. Coupaye, and J.B. Stefani. Recursive and dynamic software composition
with sharing. In Seventh Int. Workshop on Component-Oriented Programming (WCOP02),
at ECOOP 2002, Malaga, Spain, 2002.

[10] E. Bruneton, T. Coupaye, and J.B. Stefani. The Fractal component Model. Electronic
resource: http://fractal.objectweb.org/specification/fractal-specification.pdf. February 2004.

[11] H. Comon, M. Dauchet, R. Gilleron, C. Loding, F. Jacquemard, D. Lugiez, S.
Tison, M. Tommasi. Tree Automata Techniques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata, release October, 12th 2007.

[12] CoreGRID - The European Research Network on Foundations, Software Infrastruc-
tures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies.
http://www.coregrid.net/

[13] Basic Features of the Grid Component Model Deliverable D.PM.04, CoreGRID, March
2007.

[14] J. Matevska-Meyer, W. Hasselbring, R.H. Reussner. Software architecture description
supporting component deployment and system runtime reconfiguration. Proceedings of the
Ninth International Workshop on Component-Oriented Programming, Oslo, Norway, 2004.

30 COREGRID SYMPOSIUM

[15] E.A. Strunk and J.C. Knight. Assured Reconfiguration of Embedded Real-Time Software.
DSN ’04: Proceedings of the 2004 International Conference on Dependable Systems and
Networks (DSN’04), 2004, p. 367, IEEE Computer Society.

[16] M.Y. Vardi. Automata-Theoretic Techniques for Temporal Reasoning From: Handbook of
Modal Logic, Studies in Logic and practical Reasoning, volume 3, chapter 17, Blackbourn,
Van Benthem, Wolter editors, 2006.

TOWARDS A FORMAL SEMANTICS FOR
AUTONOMIC COMPONENTS

Marco Aldinucci
Department of Computer Science, University of Pisa, Italy

aldinuc@di.unipi.it

Emilio Tuosto
Department of Computer Science, University of Leicester, UK

et52@mcs.le.ac.uk

Abstract Autonomic management can improve the QoS provided by parallel/distributed
applications. Within the CoreGRID Component Model, the autonomic manage-
ment is tailored to the automatic – monitoring-driven – alteration of the compo-
nent assembly and, therefore, is defined as the effect of (distributed) management
code.

This work yields a semantics based on hypergraph rewriting suitable to model
the dynamic evolution and non-functional aspects of Service Oriented Architec-
tures and component-based autonomic applications. In this regard, our main goal
is to provide a formal description of adaptation operations that are typically only
informally specified. We advocate that our approach makes easier to raise the
level of abstraction of management code in autonomic and adaptive applications.

Keywords: Components, adaptive applications, autonomic computing, grid, semantics, graph
rewriting.

32 COREGRID SYMPOSIUM

1. Introduction

Developers of grid applications cannot rely neither on fixed target platforms
nor on stability of their status [14]. This makes dynamic adaptivity of appli-
cations an essential feature in order to achieve user-defined levels of Quality
of Service (QoS). In this regard, component technology has gained increased
impetus in the grid community for its ability to provide a clear separation of
concerns between application logic and QoS-driven adaptation, which can also
be achieved autonomically. As an example, GCM (the Grid Component Model
defined within the CoreGRID NoE) is a hierarchical component model explic-
itly designed to support component-based autonomic applications in highly
dynamic and heterogeneous distributed platforms [7].

An assembly of components may be naturally modelled as a graph and, if
components are autonomic, the graph can vary along with the program exe-
cution and may change according to input data and/or grid hardware status.
These changes can be encoded as reaction rules within the component Auto-
nomic Manager (hereafter denoted as AM). A proper encoding of these rules
effectively realises the management policy, which can be specific of a given
assembly or pre-defined for parametric assemblies (such as behavioural skele-
tons) [2, 1]. In any case, the management plan relies on the reconfiguration
operation exposed by the component model run-time support.

A major weakness of current component models (including GCM) is that
the semantics of these operations are informally specified, thus making hard to
reason about QoS-related management of components. In this work

• We introduce few operations useful for component adaptation; the cho-
sen operations are able to capture typical adaptation patterns in paral-
lel/distributed application on top of the grid. These are presented as
non-functional interfaces of components that trigger component assem-
bly adaptation (Sec. 2).

• We detail a semantics for these operations based on hypergraph rewrit-
ing suitable for the description of component concurrent semantics and
the run-time evolution of assemblies of autonomic components along
adaptations (Sec. 3, 4, and 5).

• We discuss the appropriateness of the level of abstraction chosen to de-
scribe adaptation operations to support the design of component-based
applications and their autonomic management (Sec. 6).

The key idea of our semantical model consists in modelling component-based
applications by means of hypergraphs which generalise usual graphs be allow-
ing hyperedges, namely arcs that can connect more than two nodes. Intuitively,
hyperedges represent components able to interact through ports represented

Towards a Formal Semantics for Autonomic Components 33

by nodes of hypergraphs. The Synchronised Hyperedge Replacement (SHR)
model specifies how hypergraphs are rewritten according to a set of productions.
Basically, rewritings represent adaptation of applications possibly triggered by
the underlying grid middleware events (or by the applications themselves).

SHR has been shown suitable for modelling non-functional aspects of service
oriented computing [10–11] and is one of the modelling and theoretical tools of
the Sensoria project [20]. For simplicity, we consider a simplified version of
SHR where node fusion is limited and restriction is not considered. Even if, for
the sake of simpleness, the SHR framework used in this work is not the most
general available, it is sufficient to give semantics to the management primitives
(aka adaptation operations) addressed here. The autonomic manager – by way
of these adaptation operations – can structurally reconfigure an application to
pursue the (statically or dynamically specified) user intentions in terms of QoS.

2. Autonomic Components and GCM

Autonomic systems enable dynamically defined adaptation by allowing adap-
tations, in the form of code, scripts or rules, to be added, removed or modified
at run-time. These systems typically rely on a clear separation of concerns
between adaptation and application logic [15]. An autonomic component will
typically consist of one or more managed components coupled with a single
autonomic manager that controls them. To pursue its goal, the manager may
trigger an adaptation of the managed components to react to a run-time change
of application QoS requirements or to the platform status. In this regard, an
assembly of self-managed components implements, via their managers, a dis-
tributed algorithm that manages the entire application.

The idea of autonomic management of parallel/distributed/grid applications
is present in several programming frameworks, although in different flavours:
ASSIST [22, 3], AutoMate [18], SAFRAN [9], and GCM [7] all include au-
tonomic management features. The latter two are derived from a common
ancestor, i.e. the Fractal hierarchical component model [17]. All the named
frameworks, except SAFRAN, are targeted to distributed applications on grids.

GCM builds on the Fractal component model [17] and exhibits three promi-
nent features: hierarchical composition, collective interactions and autonomic
management. GCM components have two kinds of interfaces: functional and
non-functional ones. The functional interfaces host all those ports concerned
with implementation of the functional features of the component. The non-
functional interfaces host all those ports needed to support the component man-
agement activity in the implementation of the non-functional features, i.e. all
those features contributing to the efficiency of the component in obtaining the
expected (functional) results but not directly involved in result computation.
Each GCM component therefore contains an AM , interacting with other man-

34 COREGRID SYMPOSIUM

agers in other components via the component non-functional interfaces. The
AM implements the autonomic cycle via a simple program based on reactive
rules. These rules are typically specified as a collection of when-event-if-
cond-then-adapt op clauses, where event is raised by the monitoring of com-
ponent internal or external activity (e.g. the component server interface re-
ceived a request, and the platform running a component exceeded a threshold
load, respectively); cond is an expression over component internal attributes
(e.g. component life-cycle status); adapt op represents an adaptation operation
(e.g. create, destroy a component, wire, unwire components, notify events to
another component’s manager) [9].

We informally describe some common adaptation operations that may be
assigned to configuration interfaces:

Migration A component is required to change its running location (e.g. plat-
form, site). The request must include the new location and can be per-
formed while keeping its attached external state (go) or restating from a
fresh default state (start).

Replication A component (either composite or primitive) is replicated. Repli-
cation operation is particularly targeted to composite components exhibit-
ing the parametric replication of inner components (such as behaviour
skeletons), and can be used to change their parallelism degree (and thus
their performance and fault-tolerance properties). Replication events are
further characterized with respect to their relation with replicated com-
ponent state, if any. A component replica may be created with a fresh
external state, carry a copy of the external state (copy), or share the
external state with the source component (share).

Kill A component is killed. Due to this kind of action disconnected components
(and in particular storage managers) can subject to garbage collection.

Described primitives make possible the implementation of several adapta-
tion paradigms. In particular, migration may be used to adapt the application to
changes of grid topology as well as to performance drop of resources. Replica-
tion and kill may be used to adapt both data and task parallel computation. In
particular, replication with share makes it possible the redistribution of sub-task
in data parallel computations; replication with copy enables hot-redundancy.
Both stateful and stateless farm computation (parameter-sweeping, embarrass-
ingly parallel) may be reshaped both in parallelism degree and location run by
using replication and kill.

Towards a Formal Semantics for Autonomic Components 35

Example 1 Let P, C, SF, S, AM , W1, W2, W3 components (Producer, Con-
sumer, Stateful Farm1, Storage, Autonomic Manager, and Workers); L1 · · · L8

locations (e.g. sites, platforms). Thee kinds of bindings are used in the assem-
bly (see also Sec. 4).

The described assembly of components (left) is paradigmatic of many pro-
ducer-filter-consumer applications, where the producer (P) generates a stream
of data and the filter is parallel component (SF) exhibiting a shared state among
its inner components (e.g. a database). The original assembly (left) can be
dynamically adapted (right) byway of twoadaptation operations to react to run-
time events, such as a request of increasing the throughput. The go operation
moves W1 from L2 to L7 (as an example to move a component onto a more
powerful machine); the share operation that replicates W2 and place it in the
new location L8 (to increase the parallelism degree). Both operations preserve
the external state of the migrated/replicated component, which is realised by
way of a storage component) attached via a data sharing interface [4].

Example 1 illustrates how the management can be described from a global
viewpoint. Indeed, the system is described by in a rather detailed way, e.g.,
components are explicitly enumerated along with their connections. Even if
this global viewpoint is useful (and sometime unavoidable) when designing
distributed systems, it falls short in describing what single components are
supposed to do when a reconfiguration is required. In other terms, it is hard to
tell what the local behaviour of each component should be in order to obtain
the reconfiguration described by the global view.

Also, it is worth remarking that, though the diagram clearly describes the
changes triggered by AM in this scenario, the lack of a formal semantics leaves
some ambiguities. For example, it is not clear if the reconfiguration should take
place if, and only if, the system is configured as on the lhs or this is rather a
”template” configuration (e.g., should the system reconfigure itself also when
W2 is connected to W1? What if W2 was not present?). Of course, such
ambiguous situations can be avoided when a formal semantics is adopted.

1This component is a composite component, and in particular it is an instance of a behavioural skeleton [2].

36 COREGRID SYMPOSIUM

3. A Walk through SHR

Synchronised Hyperedge Replacement (SHR) can be thought of as a rule-
based framework for modelling (various aspects of) of distributed comput-
ing [11] modelled as hypergraphs, a generalisation of graphs roughly repre-
senting (sets of) relations among nodes. While graphs represent (sets of) bi-
nary relations (labelled arcs connect exactly two nodes), labelled hyperedges
(hereafter, edges) can connect any number of nodes. We give an informal al-
beit precise description of hypergraphs and SHR through a suitable graphical
notation. The interested reader is referred to [11, 16] and references therein for
the technical details.

Example 2 In our graphical notation, a hypergraph is depicted as

• l AM •l
′

•s σ

•
g

f •
s′

σ

Edges (labelled by f , AM and σ) are connected to nodes (g, l, l′, s and s′).
Specifically, AM connects g and l′, f connects g, l′ and s′ while two σ-labelled
edges are attached to s and s′. Notice that nodes can be isolated (e.g., l).

Hyperedges represent (distributed) components that interact through ports rep-
resented by nodes. Connections between edges and nodes, called tentacles,
allow components sharing ports to interact (e.g., in Example 2, f and AM can
interact on g and on l′).

Example 3 The hypergraph in Example 2 represents (part of) a system where
a manager AM and a component f are located at l′ and can interact on port
g. The component f has access to the store at s′ (e.g. by way of a data port
[4]). In the system are also present another location l and store s.

As in string grammars, SHR rewriting is driven by productions. In fact,
strings can be rewritten according to a set of productions, i.e. rules of the
form α −→ β, where α and β are strings (over fixed alphabets of terminal and
non-terminal symbols). Similarly, in SHR hypergraph rewritings are specified
by productions of the form L −→ R, where the lhs L is a hyperedge, the rhs
R is a hypergraphs and states that occurrences of L can be replaced with R.
Intuitively, edges correspond to non-terminals and can be replaced with a hy-
pergraph according to their productions. In SHR, hypergraphs are rewritten by
synchronising productions, namely edge replacement is synchronised: to ap-
ply the productions of edges sharing nodes, some conditions must be fulfilled.

Towards a Formal Semantics for Autonomic Components 37

More precisely, an SHR production can be represented as follows:

•l

•g f
copy〈g′,s′,l′〉

rep〈s′〉
• s →

•g′ f •l • l′ •s
′

•g f • s

where on the lhs is a decorated edge and on the rhs a hypergraph. The produc-
tion above should be read as a rewriting rule specifying that edge f on the lhs
can be replaced with the hypergraph on the rhs provided that the conditions on
the tentacles are fulfilled. More precisely, copy and rep must be satisfied on
node g and s, respectively while f is idle on node l, namely it does not pose
any condition on l. According to our interpretation, this amounts to say that
when component f is said to replicate with copy by its AM (condition copy
on node g), it tells its store to duplicate itself (condition rep on node s). When
such conditions are fulfilled, edge f is replaced with the hypergraph on the rhs
which yield two instances of f one of which connected to the communicated
nodes as prescribed by the rhs of the production. Indeed, f exposes three nodes
on condition copy and one on rep; these represent nodes that are communi-
cated, i.e. g and l are node communication accounts for mobility as edges can
dynamically detach their tentacles from nodes and connect them elsewhere.

SHR has a declarative flavour because programmers specify synchronisation
conditions of components independently from each other. Once the system is
built (by opportunely connecting its components) it will evolve according to
the possible synchronisations of the edges. Global transitions are obtained by
parallel application of productions with “compatible” conditions where compat-
ibility depends on the chosen synchronisation policy2. Conditions on L −→ R
make it possible to introduce the concept of“context-freeness”: the productions
with a left-hand-side (lhs) which is either a node or an edge confer a context-
free flavour to graph grammars. Indeed, such productions do not consider the
“surroundings” of their lhs. This makes it possible to design graph rewritings
that can be locally applied, whereas other graph rewriting mechanisms (such
as double-pushout) requires to be applied in a context, which may the be in the
worst case the entire graph [11, 16]. As we shall discuss in Sec. 6, the context-
freeness of the approach is one of key features making SHR well-suited to
describe autonomic component in a grid framework.

2SHR is parametric with respect to the synchronisation mechanism adopted and can even encompass several
synchronisation mechanisms.

38 COREGRID SYMPOSIUM

4. Productions for Non-functional Interfaces

SHR can adequately formalise the non-functional interface mechanisms in-
formally described in Sec. 2. Three conceptually distinct interfaces can be
considered: i) interfaces between components and AM (for management non-
functional bindings); ii) interfaces toward the external state (for data sharing
functional bindings); iii) interfaces for communicating with other components
(for RPC/dataflow functional bindings).

Since interfaces iii are application dependent, we focus on the coordination-
related interfaces i and ii.

A main advantage of our approach is that all aspects of non-functional inter-
faces are captured in a uniform framework based on SHR. Indeed,

• components are abstracted as edges connected to form a hypergraph;

• the coordination interface of each component is separately declared and
is not mingled with its computational activity;

• being SHR a local rewriting mechanism, it is possible to specify confined
re-configuration of systems triggered by local conditions;

Migration. The migration of a component f is triggered when its AM raises
a signal go with the new location on node g. The synchronisation of f on the
go signal is given by following production:

•l

•g f
go〈g′,l′〉 •

s →
•g′ •l • l′

•g f • s

specifying that f running at l accepts to migrate to l′ (lhs); the “location” tenta-
cle of f is disconnected from l and attached to l′ (rhs). Notice that f maintains
the connection to the previous state s and l is still present. The tentacle con-
nected to g on the lhs is connected to g′ on the rhs; however, it might well be that
g′ = g (f is still connected to the original AM) or g �= g′ (f changes manager).
Similarly, start moves the component to a new location l′. However, a new
external state σ is created together with its attaching node:

•l

•g fstartσ〈g′,l′,s′〉

�����
•
s →

•g′ •l • l′ σ

•g f

�������
����

•
s

•s′

Towards a Formal Semantics for Autonomic Components 39

Replication. Unlike migration, replication of f preserves the location of the
original edge (i.e. a component):

•l

•g frep〈g′,l′〉

�����
• s →

•g′ •l •l′ f

•g f

����
• s

the effect of the above production is to add a new instance of f at l′ with AM
connected to g′; of course, l = l′ and g = g′ are possible. The newly generated
instance shares external state with the original one.

Replication can also activate the new instance with a different state:

•l

•g frepσ〈g′,l′〉

�����
• s →

f •l • l′

•g f

����
• s

The production above creates a fresh replica of f at l′ and assigns to it the
manager at g′; notice that the two instances of f share the state s.

Replication can also trigger a new instance of f that acts on a copy of the state
original state as described in the production of page 37 where f must notify
to its state to duplicate itself and connect the new copy on s′. Hence, the state
connected to s duplicate itself on the node s′ when the action complementary
to rep is received, as stated below.

σ rep〈s′〉 • s → σ • s •s′ σ

Component killing. Components are killed using the following production:

•l

•g fkill〈〉 • s →
•l

•g • s

stating that f disappears when its corresponding AM sends a kill signal.

40 COREGRID SYMPOSIUM

5. Synchronising productions

The operational semantics of SHR is illustrated through an example that
highlights the following steps:

1 individuate the adjacent tentacles labelled by compatible conditions;

2 determine the synchronising productions and replace the (instances of)
edges on their lhs with the hypergraphs on their rhs;

3 fuse the nodes that are equated by the synchronisations.

Let us apply the previous steps to show how migration works in a situation
represented by the following hypergraph

AMstartσ〈g,l1,s1〉 • l •l1

•g fstartσ〈g′,l′,s′〉 •s σ

where component f is running at l and shares g with a manager AM located
at l1. For brevity, tentacles are decorated with the conditions triggering the
rewriting (step 1). Indeed, the tentacles of AM and of f incident on node g
yield compatible output and input conditions respectively so that AM orders f
to migrate to l1 and to use the store at s1 while staying connected to g.

Productions synchronisation consists in replacing the occurrences of the
edges on the lhs with the hypergraphs specified in the rhs of the productions and
applying the node fusions obtained by the node communicated. For instance, in
the previous example the synchronising productions are the startσ production
of f given in Sec. 4 and the production of AM whose lhs and rhs consist of
AM connected to g and l1 (step 2). Hence, after the synchronisation, the node
fusions g′ = g, l′ = l1 and s′ = s1 are applied (step 3), so that the hypergraph
is rewritten as

AM • l •l1

•g f •s σ •s1 σ

Let us remark that l, σ and s remain in the final hypergraph. In fact they
should not be removed because other edges can be allocated on l or access σ.

Towards a Formal Semantics for Autonomic Components 41

The intuitive description of SHR given in this section suggests the following
design style and execution style:

• assign an edge to each component and specify their productions;

• represent the system as a hypergraph;

• decorate the tentacles with the synchronisation conditions;

• synchronise the productions until possible.

It is worth remarking that, unlike other semantical frameworks (e.g., pro-
cess calculi), in SHR synchronisation conditions may require more than two
(productions of) components to be synchronised. This actually depends on the
synchronisation policy at hand. For instance, in the migration rewriting de-
scribed in this section, it is possible to use broadcast interactions on the node g
so that all the components connected on g will move at l′ when the productions
are synchronised.

6. SHR provides a suitable abstraction for GCM Managers

We envision the GCM applications as composed of assemblies autonomic
components. These components are locallymanaged by their ownAM , whereas
the global managing of the application is distributely realised via the coopera-
tion of all AMs. This cooperation may happen in different fashions, although
an arrangement in a hierarchical fashion appears quite natural for GCM appli-
cations due to the hierarchic nature of the model [7].

Irrespectively of any given schema chosen for managing orchestration, each
manager can be described in terms of the adaptations that it can locally induce,
and the coordination actions it can handle towards other managers. Observe,
however, that the ultimate nature of those coordination actions consist in give
rise to a broader adaptation involving (also) not directly managed components3.
As discussed in Sec.3, SHR enables the system designer to uniformly formalise
and encode adapt op as local rules in the AM . These rules may

• drive the adaptation of directly managed components, via the synchroni-
sation with nodes included in the managed (composite) component, such
as go, start, rep, copy, and kill;

• drive broader adaptations via the synchronisation with other AMs. The
formalisation of these rules is currently under investigation and it not
fully discussed in this work. Preliminary results suggest the feasibility
of a design based on just two rules for interaction among managers: a

3Indeed, both classes of operations have been denoted as adapt op (see Sec. 2).

42 COREGRID SYMPOSIUM

rule to (dynamically) send a new set of rules to other AMs, and a rule to
raise exception/violation toward other AMs.

An implementation of GCM exploiting described principles is currently on-
going. The feasibility of the approach has been prototyped with SCA/Tuscany
[19, 21] leveraging on a JBoss-based [13] encoding of when-event-if-cond
-then-adapt op rules. [8]. This kind of encoding makes easy the serialisation
of rules to support their portability across different AMs.

A distinguished feature of our approach is the high level of abstraction that
can be achieved through SHR formalisation of adaptation operations. This
results in:

• The possibility to model very different attributes related to QoS manage-
ment. As an example, in the previous sections we uniformly used nodes
of the graphs to model locations, storage ports, functional ports, and non-
functional ports. The concept can be easily and uniformly extended to
cover other attributes that may be of interest of a particular instance of the
model, inter alia attributes concerning security, robustness, and platform
configuration.

• The possibility to describe autonomic behaviour irrespectively of any
particular implementation. This is mostly due to the neutrality of the
description with respect to lower level detail of the component model be-
haviour, inter alia component life-cycle, interactions between functional
and non-functional ports. As an example, the proposed description of
adaptation operation is suitable for GCM/P [2], ASSIST [3], and SCA/-
Tuscany [8] implementation of autonomic components.

In regard to the latter point, observe that our approach substantially differs
from other formalisation efforts aiming to model and check a particular imple-
mentation of an adaptive component framework (such as [6]). In particular, the
SHR description cannot be directly checked before being mapped onto a con-
crete model. We believe, however, this is a strength of the approach rather than
a limitation. On the one hand, because the concrete model can be automatically
generated through compilation once implementation-specific details has been
fixed, whereas in other approaches the model is entirely manually designed.
On the other hand, because it can support different concrete models matching
different implementations.

Example 4 The reference implementation of GCM (GCM/P [12], developed
on top of the Proactive middleware [5]) and ASSIST [3] exploit slightly different
autonomic component models and substantially different implementations. i)
ASSIST is implemented in C++ whereas GCM/P in Java. ii) ASSIST does not
require a component subject of a copy to be in stopped state, whereas GCM/P

Towards a Formal Semantics for Autonomic Components 43

does. iii) ASSIST implements kill as component destruction, whereas GCM/P
as logical marking. iv) ASSIST provides a native Distributed Shared Memory
for external storage in share, whereas GCM/P does not. v) ASSIST does not
implements go for all components, whereas GCM/P does. However, they both
implement the same set of adaptation operations, which is the one described
in the previous sections. As expected, the same operation exhibits different
limitations and overheads in the two implementations4 .

Finally, observe that proposed approach to formalisation of autonomic com-
ponents slightly extends classic (run-time) autonomic approach. We believe
that the GCM equipped with those adaptation operations make it possible the
definition of a malleable component model in which adaptations may be either
applied autonomically at run-time (under the control of the AMs) or statically
exploited to achieve static or launch-time optimisation targeted to generate/con-
figure a particular component assembly for a well-known running environment
(e.g. a cluster), thus potentially achieving a significant reduction of overhead
in the running code while keeping the full ubiquity potential of the GCM ap-
plications.

7. Conclusions

In this work we introduced a SHR formalisation of adaptation operations
suitable to support the definition and the evolution autonomic components,
and in particular GCM-based autonomic components, which has been defined
within the CoreGRID NoE.

A reference implementation of GCM (GCM/P) autonomic components is
currently ongoing within the GridCOMP STREP project [12]. In this imple-
mentation, the autonomic manager of a component is currently defined as a
chunk of plain Java code (wrapped into a proper placeholder) invoking moni-
tor and adaptation operations. This approach, despite already fully functional
[2], is excessively low-level and implementation-dependent, thus is unlikely to
properly support the design of management for large/complex component as-
semblies, to sustain the design of reusable management policies, and to survive
to the porting of these policies to other implementations of the same (or similar)
component models.

The proposed formalisation aims to raise the level of abstraction of adaptation
operations and their effects (i.e. their semantics), thus providing

• the application designer with a theoretical tool to design management
policies, and reason about their effects (effectiveness, correctness, etc.);

4On the whole, GCM/P focuses on generality whereas ASSIST on performance [3, 2].

44 COREGRID SYMPOSIUM

• the component model developers with a formal specification of adapta-
tion operations as reference for their implementation and manipulation
(parsing, serialisation, dynamic installation, etc.)

SHR has been previously exploited in [10] for managing application level
service level agreement (SLA) in a distributed environment, and in [11] to
tackle several programming and modelling facets arising in service oriented
computing. Here, we shown that SHR is a suitable tool to describe adaptation
operations at the “proper” level of abstraction, thus making possible to achieve

• the uniform description of the attributes involved in component assembly
adaptation (such as location, storage ports, etc.);

• describe adaptations at the level of the component model (as opposed to
its implementation);

• the design of effective and reusable autonomic management policies.

The presented adaptation operations are currently implemented (as Java
code) in GCM/P; their effectiveness and overhead in managing the QoS of
grid applications is discussed in [1–2].

Acknowledgments

This research has been supported by the FP6 Network of Excellence Core-
GRID, the FP6 GridCOMP project funded by the European Commission (IST-
2002-004265 and FP6-034442), and the Sensoria project funded by the Eu-
ropean Commission (FET-GC II IST-2005-16004).

References
[1] M. Aldinucci, S. Campa, M. Danelutto, P. Dazzi, P. Kilpatrick, D. Laforenza, and N. Tonel-

lotto. Behavioural skeletons for component autonomic management on grids. In M. Dane-
lutto, P. Frangopoulou, and V. Getov, editors, Making Grids Work, CoreGRID. Springer,
May 2008.

[2] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Dazzi, D. Laforenza, N. Tonel-
lotto, and P. Kilpatrick. Behavioural skeletons in GCM: autonomic management of grid
components. In D. E. Baz, J. Bourgeois, and F. Spies, editors, Proc. of Intl. Euromicro
PDP 2008: Parallel Distributed and network-based Processing, pages 54–63, Toulouse,
France, Feb. 2008. IEEE.

[3] M. Aldinucci and M. Danelutto. Algorithmic skeletons meeting grids. Parallel Computing,
32(7):449–462, 2006.

[4] G. Antoniu, H. Bouziane, L. Breuil, M. Jan, and C. Pérez. Enabling transparent data
sharing in component models. In 6th IEEE Intl. Symposium on Cluster Computing and
the Grid (CCGRID), pages 430–433, Singapore, May 2006.

[5] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Quilici. Grid Com-
puting: Software Environments and Tools, chapter Programming, Deploying, Composing,
for the Grid. Springer, Jan. 2006.

Towards a Formal Semantics for Autonomic Components 45

[6] T. Barros, L. Henrio, and E. Madelaine. Behavioural models for hierarchical components.
In P. Godefroid, editor, Model Checking Software, Proc. of the 12th Intl. SPIN Workshop,
volume 3639 of LNCS, pages 154–168, San Francisco, CA, USA, Aug. 2005. Springer.

[7] CoreGRID NoE deliverable series, Institute on Programming Model. Deliverable
D.PM.04 – Basic Features of the Grid Component Model (assessed), Feb. 2007. http:
//www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf.

[8] M. Danelutto and G. Zoppi. Behavioural skeletons meeting services. In Proc. of ICCS:
Intl. Conference on Computational Science, Workshop on Practical Aspects of High-level
Parallel Programming, volume 5101 of LNCS, pages 146–153, Krakow, Poland, June
2008. Springer.

[9] P.-C. David and T. Ledoux. An aspect-oriented approach for developing self-adaptive
fractal components. In W. Löwe and M. Südholt, editors, Proc. of the 5th Intl Symposium
Software onComposition (SC 2006), volume 4089 ofLNCS, pages 82–97, Vienna, Austria,
Mar. 2006. Springer.

[10] R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A formal basis for
reasoning on programmable Qos. In Intl. SymposiumonVerification – Theory andPractice
– Honoring Z. Manna’s 64th Birthday, volume 2772 of LNCS. Springer, June 2003.

[11] G. Ferrari, D. Hirsch, I. Lanese, U. Montanari, and E. Tuosto. Synchronised hyperedge
replacement as a model for service oriented computing. In F. de Boer, M. Bonsangue,
S. Graf, and W. de Roever, editors, Formal Methods for Components and Objects: 4th
Intl. Symposium,FMCO, volume 4111 ofLNCS, Amsterdam, The Netherlands, Nov. 2006.
Springer. Revised Lectures.

[12] GridCOMP Project. Grid Programming with Components, An Advanced Component
Platform for an Effective Invisible Grid, 2008. http://gridcomp.ercim.org.

[13] JBoss rules home page. http://www.jboss.com/products/rules, 2008.

[14] K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper, L. Torczon, F. Berman, A. Chien,
H. Dail, O. Sievert, D. Angulo, I. Foster, D. Gannon, L. Johnsson, C. Kesselman, R. Aydt,
D. Reed, J. Dongarra, S. Vadhiyar, and R. Wolski. Toward a framework for preparing and
executing adaptive Grid programs. In Proc. of NSF Next Generation Systems Program
Workshop (IPDPS 2002), 2002.

[15] J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE Computer,
36(1):41–50, 2003.

[16] I. Lanese and E. Tuosto. Synchronized Hyperedge Replacement for Heterogeneous Sys-
tems. In J. Jacquet and G. Picco, editors, International Conference on Coordination
Models and Languages, volume 3454 of LNCS, pages 220 – 235. Springer, April 2005.

[17] ObjectWeb Consortium. The Fractal Component Model, Technical Specification, 2003.

[18] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang, and S. Hariri. AutoMate:
Enabling autonomic applications on the Grid. Cluster Computing, 9(2):161–174, 2006.

[19] Service component architecture. http://www.ibm.com/developerworks/library/
specification/ws-sca/, 2008.

[20] Sensoria Project. Software Engineering for Service-Oriented Overlay Computers, 2008.
http://sensoria.fast.de/.

[21] Tuscany home page. http://incubator.apache.org/tuscany/, 2008.

[22] M. Vanneschi. The programming model of ASSIST, an environment for parallel and
distributed portable applications. Parallel Computing, 28(12):1709–1732, Dec. 2002.

INTEGRATING APPLICATION AND SYSTEM
COMPONENTS WITH THE GRID COMPONENT
MODEL

Michal Ejdys, Ula Herman-Izycka, Namita Lal, Thilo Kielmann∗
Vrije Universiteit
Dept. of Computer Science
De Boelelaan 1083
1081HV Amsterdam, The Netherlands

kielmann@cs.vu.nl

Enric Tejedor, Rosa M. Badia
Univ. Politècnica de Catalunya
C/ Jordi Girona, 1–3
E-08034 Barcelona, Spain

Abstract The Grid Component Model (GCM) is becoming a promising development plat-
form for flexible and adaptable grid applications. Recently, a set of mediator
components has been proposed for providing a uniform and integrated platform
to access grid middleware, services, and resources from an application. In this
paper, we present our experiences with building such mediator components us-
ing GCM, focusing on two functionality areas. First, we show how application
adaption support can be realized via mediator components, based on a set of com-
ponent controllers through which the application components can be adapted and
steered. Second, we show how a service and resource abstraction layer can be
controlled at runtime from the mediator components.

Keywords: Grid Component Model (GCM), Mediator Components, Grid Application Toolkit
(GAT)

∗Contact author.

48 COREGRID SYMPOSIUM

1. Introduction

Developing grid applications has proven to be a hard problem. What dis-
tinguishes grids from other environments is their heterogeneity, dynamic vari-
ability of resource quality, and their non-negligible failure rates, in their totality
requiring approaches to application development that take these non-functional
properties into account [14].

Many grid programming models have been proposed. Component models
like CCA [4]or Fractal [6]provide the flexibility that is needed to address the
challenges of grid programming. The Grid Component Model (GCM) [8]is
becoming a promising development platform for flexible and adaptable grid
applications. Recently, an integrated toolkit for grid applications has been
proposed [9], using both a set of mediator components and a service and resource
abstraction layer to integrate GCM-based applications with grid middleware
environments.

In this paper, we present our experiences with building such mediator com-
ponents using GCM, focusing on two functionality areas. First, we show how
application adaption support can be realized via mediator components, based
on a set of component controllers through which the application components
can be adapted and steered. Second, we show how a service and resource ab-
straction layer can be controlled at runtime from the mediator components. We
show how both GCM-aware and GCM-unaware applications can be used with
our mediator component toolkit.

The remainder of this paper is organized as follows. Section 2 and Section 3
briefly present the GCM component model, and survey the integrated toolkit,
respectively. Section 4 describes a more detailed design for the integration of
the mediator components with application components. In Section 5, we de-
scribe how GCM components can be used to dynamically adapt the service and
resource abstraction layer, too, shown on the example of the JavaGAT [16]im-
plementation. Section 6 discusses related work. Section 7 concludes.

2. The Grid Component Model (GCM)

GCM allows applications to be written in a way that they can cope with the
specific requirements of grid environments, most prominently resource hetero-
geneity, performance variability, and fluctuating availability. GCM is address-
ing these issues by the following properties.

First, GCM is a hierarchical component model. This means that users of
GCM (programmers) have the possibility of building new GCM components as
compositions of existing GCM components. The new, composite components
programmed in this way are first class components, in that they can be used
in every context where non-composite, elementary components can be used.

Integrating Application and System Components with GCM 49

Programmers need not necessarily perceive these components as composite,
unless they explicitly want to consider this feature.

GCM allows component interactions to take place with several distinct mech-
anisms. In addition to classical use/provide (or client/server) ports, GCM allows
data, stream and event ports to be used in component interaction. Using data
ports, components can express data sharing between components while pre-
serving the ability to properly perform ad hoc optimization of the interaction
among components sharing data. While stream ports can be easily emulated by
classical use/provide ports, their explicit inclusion allows much more effective
optimizations to be performed in the component run-time support (framework).
Event ports may be used to provide asynchronous interaction capabilities to the
component framework. Events can be subscribed and generated. Furthermore,
events can be used just to synchronize components as well as to synchronize
and to exchange data while the synchronization takes place.

Regarding collective interaction patterns, GCM supports several kinds of
collective ports, including those supporting implementation of structured inter-
action between a single use port and multiple provide ports (multicast collective)
and between multiple use ports and a single provide port (gathercast collective).
The two parametric (and therefore customizable) interaction mechanisms allow
the implementation of most (hopefully all) of the interesting collective interac-
tion patterns deriving from the usage of composite (parallel) components.

GCM is intended to be used in grid contexts, that is in highly dynamic,
heterogeneous and networked target architectures. GCM therefore provides
several levels of autonomic managers in components, that take care of the
non-functional features of the component programs. GCM components have
thus two kind of interfaces: a functional one and a non-functional one. The
functional interface includes all those ports contributing to the implementa-
tion of the functional features of the component, i.e. those features directly
contributing to the computation of the result expected of the component. The
non-functional interface comprises all those ports needed to support the com
ponent manager activity in the implementation of the non-functional features,
i.e. all those features contributing to the efficiency of the component in the
achievement of the expected (functional) results but not directly involved in
actual result computation. Each GCM component therefore contains one or
more managers, interacting with other managers in other components via the
component’s non-functional interfaces and with the managers of the internal
components of the same component using the mechanism provided by the GCM
component implementation. Each component has a manager whose job it is to
ensure efficient execution of the component on the target grid architecture.

50 COREGRID SYMPOSIUM

3. The Mediator Component Toolkit

The goal of the mediator component toolkit is to integrate system-component
capabilities into application code, achieving both steering of the application
and performance adaptation by the application to achieve the most efficient
execution on the available resources offered by the Grid.

By introducing such a set of components, resources and services in the Grid
get integrated into one overall system with homogeneous component interfaces.
The advantage of such a component system is that it abstracts from the many
software architectures and technologies used underneath.

application
meta−data
repository

application
manager component

tuning
component

steering

steering
interface

information cache
application−level

Grid−aware
application

user portal
PSE

security context

service and resource abstraction layer

resource
broker

services services
information

services
monitoringapplication

persistence
service

. . .

Grid−unaware application

integrated toolkit

Figure 1: The generic component platform with mediator components, from [9].

The strength of such a component-based approach is that it provides a ho-
mogeneous set of well-defined (component-level) interfaces to and between all
software systems in a Grid platform, ranging from portals and applications, via
mediator components to the underlying system software. The set of envisioned
mediator components, with their embedding in the generic component platform,
can be seen in Figure 1; a detailed description can be found in [9]. We briefly
summarize the mediator components in the following.

Application-level information cache
This component is supposed to provide a unified interface to deliver
all kinds of meta-data (e.g., from a GIS, a monitoring system, from
application-level meta data) to the application. Its purpose is twofold.
First, it is supposed to provide a unifying component interface to all data
(independent of its actual storage), including mechanisms for service and
information discovery. Second, this application-level cache is supposed
to deliver the information really fast, cutting down access times of current
implementations like Globus GIS (up to multiple seconds) to the order of
a method invocation. For the latter purpose, this component may have to

Integrating Application and System Components with GCM 51

prefetch (poll) information from the various sources to provide them to
the application in time. An implementation of such a component, albeit
without a “real,” e.g. GCM, component interface, has been described
in [2].

Application steering and tuning components
Controlling and steering of applications by the user, e.g. via application
managers, user portals, and problem solving environments (PSE’s), re-
quires a component-level interface to give external components access
to the application. Besides the steering interface, also dedicated steering
components are necessary, both for mediating between application and
system components, but also for implementing pro-active steering sys-
tems, carrying their own threads of activity. The steering components
thus provide a framework for performance tuning, which can be used to
improve the execution time of applications automatically as well as for
improving services and tools which are involved in the environment.

Application manager component
The envisioned application manager component establishes a pro-active
user interface, in charge of tracking an application from submission to
successful completion. Such an application manager is in charge of
guaranteeing such successful completion in spite of temporary error con-
ditions or performance limitations. (In other settings, such an active
component might be referred to as an agent.) For performing its task, the
application manager will need to interoperate with most of the other me-
diator components, like the application itself (via the steering interface),
the application meta data repository and cache, as well as an application
persistence service, like the one published in [15].

The components as described so far denote the core of the mediator set.
In the course of ongoing work, this set is being refined and enriched as new
experience will be gained.

4. Application Adaptation Support

The generic component platform, along with the mediator components, pro-
vides a platform for grid applications to adapt themselves to changing conditions
and resources at runtime. In this section, we propose how to interface appli-
cation components to this platform. We assume a parallel application that can
adapt itself via its data distribution or by migration to other compute nodes. An
example for such an application could be Successive Over Relaxation (SOR)
which is based on nearest-neighbour communication. Applications with other
communication patterns (like master/worker) would also be applicable. We
also assume that the application shall be steered by its user.

52 COREGRID SYMPOSIUM

For both adaptation by tuning and management components, as well as by
the user via the steering component, the application components have to be
called by the mediator components. For this purpose, we propose the interface
shown in Figure 2, with specialized controllers that are added to the application
components’ membrane.

Based on experience gathered when investigating the GCM component frame-
work, we propose the following extensions. First, in order to effectively modify
the structure of a running application, we propose to implement an explorer
component. Thus, the user could switch between different implementations of
his/her algorithms without the need to stop and re-run their application.

Second, the mediator toolkit can greatly benefit from implementing different
control aspects of the application separately, namely by using controllers. We
propose to introduce into the architecture the following controllers, as depicted
in Figure 2:

• steering – for modifying application parameters, which would allow for
computational steering during runtime

• persistence – for handling checkpoints: initiating checkpoints, as well as
starting (from checkpoint or from scratch) and stopping the application

• distribution – for optimal utilization of allocated resources, and for adapt-
ing to changes in environment (releasing and acquiring resources, changes
in quality of network connections)

• component – for investigating the application’s structure (in terms of com-
ponents) and modifying it (e.g. switching to alternative implementation,
replacing subcomponents)

Note that the component controller is already implemented in GCM. How-
ever, the other controllers have to be added according to the necessary function-
ality. Another important observation is that communication with the application
is via its controllers only.

4.1 Persistence Controller and Life Cycle Controller

The Persistence Controller is the manager of an application instance. Not
only is it responsible for checkpointing, but also for starting (from scratch or
from a checkpoint) and stopping an application. For this to be accomplished, we
propose bounding the Persistence Controller with GCM’s LifeCycleController.
The latter is a simple state automaton (with two states: started and stopped).
We propose extending the state-cycle to service checkpointing. See Figure 3.

We propose to extend the started state of the component by adding substates
representing different stages of the running application (created, initialized,
running, and finished), and checkpointing.

Integrating Application and System Components with GCM 53

application
Grid−unaware with integrated tookit or Grid−aware

to
ol

ki
t

co
m

po
ne

nt
s

co
m

po
ne

nt
s

sy
st

em
co

m
po

ne
nt

s
ap

pl
ic

at
io

n

application
manager component

tuning app−level
info cache
component

explorer
componentcomponent

steering

security context

user portal
PSE

broker
resource

system
information

system
monitoring application

meta−data
repository

steering
controller

persistence
controller controller

distribution
controller

component

Figure 2: Generic component platform with application controllers.

STARTED

FINISHED RUNNING

INITIALIZEDCREATED

Compound state of GCM LifeCycleController

State of extended LifeCycleController

CHECKPOINTING

STOPPED

Figure 3: Extended states of LifeCycleController.

The GCM LifeCycleController is responsible for starting and stopping the
component. There are certain conditions under which a component can be
stopped. For example, all method invocations on this component should have
finished (a special interceptor keeps a counter of active method invocations).
Similarly, only a component with all mandatory interfaces bound can be started.

Our system also benefits from this approach. Transitions between stopped
and started states are limited to only a few started substates. The component
must not be allowed to stop while checkpointing is in progress. Addition-
ally, stopping an application in the running state could mean interrupting the
application (transition to finished) first.

4.2 Application controllers

The proposed application controllers (steering – sc, persistence – pc, distri-
bution – dc, and component – cc) are implemented as GCM-controllers, part of
the membrane, shown in Figure 4 (left). Alternatively, the controllers can also

54 COREGRID SYMPOSIUM

be implemented as components inside a compound component, together with
the application component itself, shown in Figure 4 (right). This design can be
used for GCM-unaware applications as discussed below.

application
component

sc pc dc cc

application
component

sc

pc
dc cc

component
with interfaces

controller object membrane

Figure 4: Controllers inside the component membrane (left) or as subcomponents (right).

4.3 Dealing with GCM-aware and unaware applications

The GCM Mediator Toolkit is ready to run not only with applications that
have been developed with GCM in mind, but also with application objects
(rather than components), from “legacy” applications, as shown in Figure 5.

GCM-unaware application GCM-aware application

Controller
Default Component

cc Controller
Default Steering

sc

Controller
Default Persistence

Application

pc

Controller
Default Distribution

dc

Application manager

Default application component

am

Application manager
User application component

sc

cc

pc

dc

am

objectcomponent

Figure 5: Integrating applications with mediator controllers.

GCM-unaware applications. The framework is able to cooperate with ap-
plications that do not use the GCM framework, shown in Figure 5, left. In that

Integrating Application and System Components with GCM 55

case, a set of default controllers is created. A user application is encapsulated by
the default persistence controller as this component is responsible for starting
and stopping the application, and it has direct access to the application object.
This controller, together with the default distribution, component, and steering
controllers, are integrated to a default application component, which is bound
to the rest of the framework via the application manager.

The default implementations of controllers are very simple. Only the persis-
tence controller is able to perform some actions – starting and terminating the
application. All other methods in this and the remaining controllers throw a not
implemented exception, as they cannot be provided without specific knowledge
about the application.

GCM-aware applications. These are very easy to connect to the framework.
The only requirement towards the application developer is to deliver a GCM
component (user application component, see Figure 5, right) with exported
interfaces for each of the controllers (dc, pc, cc, and sc). Internally, they are
expected to be bound to the user’s implementation of the controllers.

5. Service and Resource Abstraction

The mediator component toolkit is using a service and resource abstraction
layer for the boundary between system and application components on one
side, and (remote) services and resources, on the other side. The Java Grid
Application Toolkit (JavaGAT) [16]is an implementation of such a layer. It
provides an object-oriented, high-level, and middleware-independent interface
to the grid.

Figure 6: Structure of the JavaGAT implementation, from [16].

56 COREGRID SYMPOSIUM

JavaGAT uses nested exceptions and intelligent dispatching of method in-
vocations to automatically select the most suitable grid middleware that imple-
ments the requested operations [16]. For instance, file transfers are typically
faster with GridFTP than with SSH, as GridFTP can use parallel data streams.
Another reason for a particular preference could be security: the most secure
transfer protocol could be tried first (much like SSH does). Figure 6 illustrates
the structure of the JavaGAT implementation. The JavaGAT engine is using
adaptor selection policies to express preferences for different adaptors and the
middleware they interface to. We propose to modify the engine such that the
configuration of these policies is more dynamic than its current implementation.

In JavaGAT, the selection process of the appropriate middleware (adaptors)
is done at runtime using a default ordering policy that defines the order in
which the adaptors are tried. This default ordering can be overridden by a
user-defined policy allowing the user to define the order in which the adaptors
are tried to service a particular request call. This can be done by defining an
AdaptorOrderingPolicy class and specifying the name of the new ordering class
using a command line option that sets a Java system property.

However, since the user-defined ordering policy is specified as a system
property when the application is started, it is a one-time configuration that cannot
be changed while the application is running. In order to make this configuration
moreflexible, we investigate how we can utilize GCM’s component architecture
in order to make the policy more dynamic.

In order to make this possible we define a GCM component that exposes
an interface that can allow the user of the application to provide a new adap-
tor ordering policy for a particular GATobject. Internally to the engine, each
GATobject provides a method that can be invoked internally by the component
to change the ordering of the adaptors in the adaptor list. Access to this list
has to be synchronized since the list can be concurrently modified through the
GCM component while it is being used by the adaptor selection process. This
setup is illustrated in Figure 7.

6. Related Work

The work presented in this paper is presenting our experiences with in-
tegrating application and system components into a homogeneous system of
components. It is directly based on work within CoreGRID, namely the Grid
Component Model (GCM) [8], and the set of mediator components [9]. We are
using the ProActive/GCM implementation from the GridCOMP project [10].

What distinguishes grids from other environments is their heterogeneity,
dynamic variability of resource quality, and their non-negligible failure rates,
in their totality requiring approaches to application development that take these
non-functional properties into account [14]. In consequence, approaches to

Integrating Application and System Components with GCM 57

Figure 7: Dynamic adaptor ordering using GCM components.

dynamically adapt applications to changing grid environments are legion. Here,
we can only mention a few.

First of all, the GCM model provides the core mechanisms for our work.
Important, in this respect, is the work on skeleton-based, autonomic manage-
ment of grid components within GCM [1]. Behavioural skeletons are closely
related to higher-order components (HOC’s) that are likewise proposed for per-
formance adaptation of grid applications [3]. Both skeletons and HOC’s are
providing structural frameworks in which application components can be in-
serted and being leveraged from directly dealing with adaptation issues. In
contrast, mediator components do not require applications to fit into certain
structures but let them provide application-specific code to be interfaced with
the provided controllers.

Of course, there also exist many approaches to adapting grid applications
that are not based on components. Examples providing some form of applica-
tion frameworks or infrastructures are [5, 11, 12, 18, 19]. The most puristic
approach is to modify the application code itself, or to develop new, grid-aware
applications [7, 17]. In contrast to these approaches, we propose to build both
applications and their supportive environments from the same grid component
model (GCM), and to tightly integrate them for flexible composition of efficient
and adaptive grid applications.

58 COREGRID SYMPOSIUM

Whereas application performance is the predominant goal of running ap-
plications in grids, it is not the only purpose for which dynamic adaptation
is required. Via service and resource abstraction, applications become inde-
pendent of and portable across different grid middleware and infrastructure.
This purpose is addressed by the Grid Application Toolkit (the JavaGAT) [16],
or by the implementation of the recently standardized SAGA API [13]. Both
SAGA and the JavaGAT need some form of configuration information from the
user in order to identify and select proper middleware adaptors. Our mediator
component-based framework provides an integrated mechanism to provide all
necessary information to a resource and service abstraction layer, like SAGA
or JavaGAT.

7. Conclusions

With the Grid Component Model (GCM), applications can be written in ways
to cope with specific requirements of grid environments, namely resource het-
erogeneity, performance variability, and fluctuating availability. The integrated
toolkit for grid applications is providing both a set of mediator components
and a service and resource abstraction layer, allowing to integrate application
components with grid middleware systems.

In this paper, we have presented our design for integrating the mediator
components with the application itself. We have also shown, on the example
of the JavaGAT, how the service and resource abstraction layer can be made
adaptive, too. As of the time of writing, the mediator component toolkit has
been implemented partially. With the advent of a complete GCM platform
implementation, a fully integrated component platform will become available.

Acknowledgments

This research work is carried out under the FP6 Network of Excellence
CoreGRID funded by the European Commission (Contract IST-2002-004265).

References

[1] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Dazzi, D. Laforenza, N. Tonel-
lotto, and P. Kilpatrick. Behavioural skeletons in GCM: autonomic management of grid
components. In Intl. Euromicro PDP 2008: Parallel Distributed and network-based Pro-
cessing, pp. 54–63, Toulouse, France, Feb. 2008. IEEE.

[2] G. Aloisio, Z. Balaton, P. Boon, M. Cafaro, I. Epicoco, G. Gombas, P. Kacsuk, T. Kielmann,
and D. Lezzi. Integrating Resource and Service Discovery in the CoreGrid Information
Cache Mediator Component. CoreGRID Integration Workshop 2005, Pisa, Italy, 2005.

[3] M. Alt, C. Dumitrescu, S. Gorlatch, A. Kertesz, G. Sipos, and D. Epema. Towards user-
transparent performance prediction for workflows of higher-order components. In Pro-
ceedings of the CoreGRID Integration Workshop, pp. 345–356. CYFRONET Poland,
2006. ISBN 83-915141-6-1.

Integrating Application and System Components with GCM 59

[4] R. Armstrong, G. Kumfert, L.C. McInnes, S. Parker, B. Allen, M. Sottile, T. Epperly,
and T. Dahlgren. The CCA component model for high-performance scientific computing.
Concurrency and Computation: Practice and Experience, 18(2):215–229, 2006.

[5] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes,
G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov.
Adaptive Computing on the Grid using AppLeS. IEEE Trans. on Parallel and Distributed
Systems, 14(4):369–382, 2003.

[6] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The Fractal Compo-
nent Model and Its Support in Java. Software Practice and Experience, special issue on
Experiences with Auto-adaptive and Reconfigurable Systems, 36(11-12), 2006.

[7] W. Chrabakh and R. Wolski. GridSAT: A Chaff-based Distributed SAT Solver for the
Grid. In ACM/IEEE Conference on Supercomputing, page 37, 2003.

[8] CoreGRID Institute on Programming Models. Basic Features of the Grid Compo-
nent Model (assessed), Deliverable D.PM.04, CoreGRID Network of Excellence, 2007.
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm04.pdf.

[9] CoreGRID Institute on Grid Systems, Tools, and Environments. De-
sign of the Integrated Toolkit with Supporting Mediator Compo-
nents. Deliverable D.STE.05, CoreGRID Network of Excellence, 2007.
http://www.coregrid.net/mambo/images/stories/Deliverables/d.ste05.pdf.

[10] The GridCOMP project, http://gridcomp.ercim.org/, 2008.

[11] E. Heymann, M.A. Senar, E. Luque, and M. Livny. Adaptive scheduling for master-worker
applications on the computational grid. In 1st IEEE/ACM International Workshop on Grid
Computing, pp. 214–227, LNCS 1971, Springer Verlag, 2000.

[12] E. Huedo, R.S. Montero, and I.M. Llorente. A framework for adaptive execution in grids.
Software – Practice and Experience, 34(7):631–650, May 2005.

[13] S. Jha, H. Kaiser, A. Merzky, and O. Weidner. Grid Interoperability at the Applica-
tion Level Using SAGA. International Grid Interoperabilty and Interoperation Workshop
2007(IGIIW 2007).

[14] T. Kielmann. Programming Models for Grid Applications and Systems: Requirements and
Approaches. IEEE John Vincent Atanasoff International Symposium on Modern Comput-
ing (JVA 2006), Sofia, Bulgaria, October 2006, pp. 27-32.

[15] E. Krepska, T. Kielmann, R. Sirvent, R.M. Badia. A Service for Reliable Execution of Grid
Applications. In Achievements in European Research on Grid Systems, Springer Verlag,
2007.

[16] R.V. van Nieuwpoort, T. Kielmann, and H.E. Bal. User-friendly and reliable grid comput-
ing based on imperfect middleware. ACM/IEEE Conference on Supercomputing (SC’07),
2007.

[17] A. Plaat, H.E. Bal, and R.F.H. Hofman. Sensitivity of parallel applications to large differ-
ences in bandwidth and latency in two-layer interconnects. In5th International Symposium
on High Performance Computer Architecture, pp. 244–253, 1999.

[18] S.S. Vadhiyar and J.J. Dongarra. Self adaptivity in Grid computing. Concurrency and
Computation: Practice and Experience, 17(2–4):235–257, 2005.

[19] G. Wrzesinska, J. Maassen, and H.E. Bal. Self-adaptive applications on the Grid. In ACM
SIGPLAN Symposium on Principles and Practices of Parallel Programming (PPoPP’07),
San Jose, CA, USA, March 2007.

II

RESOURCE MANAGEMENT AND SCHEDULING

AN EVALUATION OF AVAILABILITY COMPARISON
AND PREDICTION FOR OPTIMIZED RESOURCE
SELECTION IN THE GRID∗

Farrukh Nadeem, Radu Prodan, Thomas Fahringer
Institute of Computer Science, University of Innsbruck, Austria

farrukh@dps.uibk.ac.at

Vincent Keller
Ecole Polytechnique Federale de Lausanne, LIN-STI, Switzerland

Vincent.Keller@epfl.ch

Abstract Resources in the Grid exhibit different availability properties and patterns over
time, mainly due to their administrators’ policies for the Grid, and the different
domains to which they belong, e.g. non-dedicated desktop Grids, on-demand
systems, P2P systems etc. This diversification in availability properties makes
availability-aware resource selection, for applications with different fault toler-
ance capabilities, a challenging problem. To address this problem, we introduce
new availability metrics for resource availability comparison. We further pre-
dict resource availability considering their availability policies. We introduce
a new resource availability predictor based on pattern matching through avail-
ability pattern recognition and classification for resource instance and duration
availability, and compare it with other methods. Notably we are able to achieve
an average accuracy of more than 80% in our predictions.

Keywords: Resource Availability Comparison, Resource Stability and Dependability, Avail-
ability Prediction, Pattern Recognition and Classification

∗This work is partially supported by the European Union through IST-2002-004265 CoreGRID and IST-
034601 edutain@grid projects. Part of this work is also supported by Higher Education Commission (HEC)
of Pakistan.

64 COREGRID SYMPOSIUM

1. Introduction

With the growing maturity of the Grid technology, the composition, func-
tionality, utilization and scale of computational Grids continue to evolve. The
large scale computational Grid environments and testbeds under centralized ad-
ministrative controls, such as, Cern LCG, Tera Grid, Grid’5000, Austrian Grid
etc. amass hundreds/thousands of resources, which vary considerably in terms
of their computation power and their availability patterns. A large number of
these resources may be unavailable at any time, mainly due to wide range of
policies for when and how to make their resources available to the Grid. These
policies are usually based on resources’ usage patterns and owners’ other pref-
erences, like shutting down the resources during night. Resources may also
be made available to the Grid on demand [1] and may even be temporarily
removed partially or completely from the Grid to accommodate other tasks or
projects.

The Grid schedulers and resource brokers need information about resource
availability properties and predictions about their future availability, besides
application execution time predictions on them, to compare and select the most
suitable resources. Knowing the resource availability properties, how often and
when the resources become unavailable, they can be more cogent, especially if
this knowledge is coupled with information about application characteristics.
For example, the applications that do not implement checkpointing mechanism
and have long run times require resources with more steady and reliable avail-
ability, whereas, the applications which require heavy checkpointing may be
scheduled to the resources with a longer availability durations and applications
with light checkpointing and easily replicable processes might even be sched-
uled on less powerful and more intermittently available resources. Similarly,
considering resource availability patterns, heavy weight checkpointing could be
created on demand rather than periodically, thereby circumventing unnecessary
overheads.

Predicting the resources’ availability and comparing them on this basis is a
hard problem due to its dependency on multiple factors like resource’s com-
ponents stability, Grid middleware maturity, varying resource maintenance and
manageability. Particularly, the wide range of policies for resource availability
in the Grid makes the problem even more challenging. To address this problem,
we present in this paper resource availability comparison framework and a new
prediction method Pattern Matching from pattern recognition and classifica-
tions, for resource instance and lifetime availability predictions. We compare
resource availability using different metrics, in particular with resource stabil-
ity, which better compares resources for their availability as a function of time.
Availability trace from Austrian Grid is undertaken for our present study. Please
note that in this paper we use the terms machine and resource interchangeably.

Resource Availability Comparison and Prediction 65

We compare the effectiveness of our prediction technique by designing
and building different predictors that take advantage of different availabil-
ity properties. Results from the prototype implementation of our system in
ASKALON [14] show that more specific information is critical for better pre-
dictions. On average, we are able to get more than 95% accuracy in our instance
availability predictions and more than 75% accuracy in duration predictions.

2. Austrian Grid Availability Trace

Here we describe the availability trace of resources in a large-scale Grid: Aus-
trian Grid. Austrian Grid is a nation-wide, multi-institutional, -administrative
and -VO Grid platform, consisting of 28 Grid-sites geographically distributed
in Austria, and collectively there are over 1.5 thousand processors. To bet-
ter expose resource availability properties, we include (external) knowledge of
high level resource availability policies for the Grid. Based on these policies,
we identify three main classes of resources in Austrian Grid: the dedicated re-
sources, which are meant to be always available to the Grid users; the temporal
resources, the resource from the university labs, are available in the Grid as long
as they are turned on; and the on-demand resources, which are made available
to the Grid only on demand from the Grid users for large scale jobs or exper-
iments. The names of the resource classes reflect their respective availability
policies.

The complete resource availability trace, in which each event (for every
individual Grid-sites) separated by 5 minutes time represents resource state
(available or unavailable), was analyzed for a duration of approx. one year from
mid-June 2006 to mid-April 2007. Altogether this trace is comprised of more
than23million events that occurred on the whole Austrian Grid. In the presented
work, a resource is considered available if it is turned on and accessible remotely
(e.g. through GRAM), otherwise it is considered unavailable.

3. Resource Availability Comparison

The main purpose of resource comparison based on the availability prop-
erties is to provide the resource broker and meta-scheduler a ranking of Grid
resources to assist the optimized resource selection process for advance reserva-
tions and execution planning respectively. We compare the Grid resources for
their availability in two dimensions: the static availability comparison through
MTBF (mean time before failure) and MTR (mean time to reboot); the dynamic
availability comparison through resource stability (for different job durations),
and the resource dependability (as a function of time). We argue that the later
two metrics are more suitable for resource comparisons as they include better
probabilities approximations about resources’ availability. These are described
in the following sections.

66 COREGRID SYMPOSIUM

3.1 Resource Stability

Stability of a Grid resource for a time duration reflects its suitability for
executing jobs of that duration. We define stability (of availability) of a Grid
resource for a duration tk, having a set of n durations t = {t1, t2, t3, ..., tn}, as:

ζ(tk) =
∑

∀ti≥tk

⌊
ti
tk

⌋
× P (ti)

where P (ti) denotes the probability of duration ti for the resource.
We present the resource stability comparison at resource class level in Figure 1.
The on-demand resources have the lowest stability while the dedicated resources
have the highest. For job duration of 60 minutes the dedicated resources have a
stability of 44 (more than 8 times that of on-demand resources), and temporal
resources exhibit that of 11 (more than 2 times that of on-demand resources).
The space limit does not allow us to present individual resource comparisons
here.

0
5

10
15
20
25
30
35
40
45

D
ur

at
io

n
S

ta
bi

lit
y

Availability Durations

dedicated clusters
temporal clusters
on demand clusters

Figure 1: Resource stabilities for jobs of different durations at resource class level

3.2 Resource Consistent Availability over Time

In contrast to existing works [8, 17] which use only simple availability prop-
erties like daily and hourly availability to compare resources, we consider mean
duration of availability as MTBF and mean duration of unavailability as MTR
for the Grid resources too. Duration of availability of Grid resources is of criti-
cal importance for execution of long jobs. Likewise, duration of unavailability
is also an important measure for ahead of time planning for job executions as in
advance reservations. We define the duration of availability as the time elapsed
between the occurrence of resource turned on or recovered after the failure and

Resource Availability Comparison and Prediction 67

0 2000 4000 6000 8000 10000

Time (min.)

c703-pc392
c703-pc421
c703-pc450
zid-209-139
zid-209-162
zid-209-179
zid-209-205

c703-pc2201
c703-pc2509

zid-209-245
Average

C
lu

st
er

 N
am

es

MTBF
MTR

MTBF-MTR Comparison of Temporal Res.

0 1000 2000 3000 4000

Time (min.)

c703-pc305

c703-pc119

c703-pc139

c703-pc273

Average
C

lu
st

er
 N

am
es

MTBF
MTR

MTBF-MTR Comparison of on-Demand Res.

0 10000 20000 30000 40000 50000 60000
Time (min.)

grid.uibk
agrid.uibk

agrid1.uibk
altix1.uibk
schafberg
altix1.jku

hydra.gup
hephygr

astro-grid2
astro-grid3

hc-ma
gescher

astro-grid1
karwendel

Average
C

lu
st

er
 N

am
es

MTBF-MTR Comparison of Dedicated Resources

MTBF
MTR

Figure 2: MTBF and MTR comparison of resources in three resource classes

again turn off/failed. Likewise, we formulate our definition for duration of un-
availability. It is noteworthy that our definitions coincide with that of time to
repair by [13, 12] and of recovery time used in [5]. Figure 2 shows average
availability duration(MTBF), and average unavailability durations(MTR), for
each of the individual resource classes. The MTBF(MTR) of resources at Grid
level, is observed about 4 days(1008 min). At resource classes level, these es-
timates clearly give a better view of resource duration availability. Intuitively,
the class of dedicated resources show the highest (of three classes) MTBF of 7
days on average, with max.(min.) of 42 days (1609 min). These also exhibited
the lowest (of three classes) MTR of 45 min., with max.(min.) of 89 (26) min.
Temporal resources, at class level showed almost equal MTBF and MTR and
highest MTR of the three classes. They showed an average MTBF and MTR
of 18 hrs. Max.(min.) of MTBF were 77(6) hrs., whereas those of MTR are
5149(381) min. On demand resources on average showed the lowest (of three
classes) MTBF of 269 min. and an MTR of 2944 min. We found on-demand
resources with higher MTR than temporal resources. The SD was quite low for

68 COREGRID SYMPOSIUM

both MTBF and MTR in case of dedicated resources, whereas these were quite
high for temporal and on-demand resource classes. It is also important to note
that the failure durations may include the night hours during which the system
administrators of the Grid sites are not available, and the durations for which
the machines are automatically turned off. Furthermore, it may also include the
durations for Grid-sites’ maintenance/repair etc.

3.3 Resource Dependability

The resource dependability describes the extent to which a resource can be
depended for being available. We define resource dependability as a function of
time duration, as its probability of availability for a given time duration or higher.
For a resource exhibiting a set of different consistent life times l = l1, l2, l3...lm

η(t) =
m∑
i

P (li) | li > t

A comparison of resource dependability at the level of resource classes is shown
in Figure 3 as a sum of probabilities of the different lifetimes(t) and their greater
lifetimes P (x ≥ t). On average, classes of dedicated, temporal and on-demand
resources have a maximum dependability of approx. 65 days, 4 days and 1000
min. respectively. It is interesting to note that dedicated resources on average
have 35% dependability for a job lasting a little more than a day. The temporal
resources are 50% dependable for the jobs of 6 hours or more, and on-demand
resources have 50% dependability for the jobs lasting more than 90 min.

0

0.2

0.4

0.6

0.8

1

5

15
5

33
0

73
5

10
35

12
40

15
45

27
25

40
45

56
00

93
55

12
75

5

23
03

0

59
11

5

Resource Life Times (min)

dedicated res
temporal res
on-demand res

Figure 3: Dependability comparison of three resource classes

Resource Availability Comparison and Prediction 69

4. Resource Availability Prediction

In this section we present our resource availability prediction methods. We
employ three methods from pattern recognition and classification for resource
availability predictions, to serve resource instance or point availability and
duration availability predictions: the Bayes’ Rule, Nearest Neighbor Rule and
PatternMatching. The motivation behind employing these methods is the shape
of the auto-correlation function of availability of the three resource classes (fig-
ure not shown), which indicates that there are strong patterns in the availability
of the resources.Instance or point availability describes resource availability at
a certain point of time; in our presented work it refers to the next monitor-
ing instance. Whereas, the duration availability describes resource availability
for a certain time duration, in our presented work it refers to the immediate
next duration of a certain time span. These methods exploit different patterns
of resource availability to serve its future availability predictions. Below we
describe some patterns in resource availability at resource class level.

4.1 Patterns in Resource Availability

We observed different resource availability patterns over time– in a day and
over different days of week. Figure 4 depicts diurnal resource availability
patterns in a day; availability peaks during 8a.m. to 8p.m. and recesses during
the remaining hours. The maximum availability was found at 4p.m., 2p.m.,
3p.m. and the minimum at 4a.m., 8a.m., 4a.m. respectively for the three
classes. We observed interesting patterns at resource class level as well at Grid
level. The availability remains comparatively in a small range during the night
hours with the minimum value between 4a.m. and 8a.m. This is the time when
most of the resources are turned off or given a restart. After the minimum value
it starts increasing towards the peak value (except one decrease in dedicated
resources), and from the maximum it decreases towards a certain level to be
maintained till the minimum occurs.

The availability patterns on 28 machines (machine names are irrelevant)
over different week days are shown in Figure 5. Two classes of patterns can
be visualized from this figure; first, with lower availability at week ends, and
higher during the working week days. This class has an increasing availability
till Tuesday or Wednesday and then decreasing till weekend. Second, with
higher availability on weekends and lower during the working weekdays. This
class has a decreasing availability till Wednesday and then again increasing
availability till Saturday.

The average SD over different hours of the day was 4.16 as compared with
that of 1.37 on a specific hour of the day. Moreover, at Grid level, an average SD
over different week days was 12.3 and that of 6.6 was observed in availabilities
on specific week days. This remarkable lower SD in availabilities on a specific

70 COREGRID SYMPOSIUM

0 5 10 15 20 25
36

40

45

50

55

Hour of the day

Pe
r d

ay
 av

ail
ab

ilit
y (

%
ag

e)
Hourly Availability of Austrian Grid Resources

0 5 10 15 20 25
94

95

96

97

98

99

Hours of the day

Pe
r d

ay
 av

ail
ab

ilit
y (

%
ag

e)

Hourly Availability of Dedicated Resources

0 5 10 15 20 25
40

45

50

55

60

65

Hour of the day

Pe
r d

ay
 av

ail
ab

ilit
y (

%
ag

e)

Hourly Availability of Temporal Resources

0 5 10 15 20 25
1

5

10

15

20

Hour of the day

Pe
r d

ay
 av

ail
ab

ilit
y (

%
ag

e)

Hourly Availability of on Demand Resources

A B

C D

Figure 4: Resource hour-of-the-day availability at resource class and Grid level

Sun Mon Tue Wed Thu Fri Sat
35

40

45

50

55

60

65

70

75

Day of the week

Pe
rd

ay
 av

ail
ab

ilit
y(

%a
ge

)

Figure 5: Resource availability patterns over different days of week

day of the week than that on all week days, indicates strong availability pattern
on specific week days. In sequel, lower SD in availabilities on specific hour of
the day than that on all hours, shows similar availability patterns over specific
hours of the day. In the following sections we present different prediction
methods we employed.

4.2 Prediction Methods

In this paper we present a new prediction method from pattern recognition
and classification: pattern matching and compare the results with our previous

Resource Availability Comparison and Prediction 71

work in [7]. The pattern matching is a well recognized technique from pattern
recognition and classification [4]. It considers resource’s recent patterns of
availability of certain duration and searches for the same from the past trace.
It predicts the resource behavior as its most likely behavior subsequently af-
ter the same patterns in the past. For instance availability prediction the first
subsequent resource status is considered, whereas for duration prediction the
subsequent duration of interest is taken into account. We employ Boyer-Moore
StringMatching algorithm with bad-character heuristic and good-suffix heuris-
tic [4] for pattern matching. The main advantage of this algorithm is that it has
a complexity just of O(n), and is much faster than similar others.

5. Performance Evaluation

This section describes the evaluation results for the prediction methods pre-
sented in the last section. We evaluated these methods for their prediction
accuracy, calculated as Accuracy =(no. of true predictions)/(total number of
prediction queries) represented as percentage. In case of instance availability
prediction, a prediction is treated true if the resource immediate next status
is the same as predicted, otherwise it is considered false. In case of duration
availability prediction, prediction is treated as true if a resource is predicted
to be available for a certain immediate duration and resource is available for
that duration or longer, otherwise it is considered false. In case when resource
is available for a duration lesser than the predicted, the accuracy of prediction
is calculated as the ratio of actual available duration to the predicted. Fur-
thermore, the accuracy is recorded for different predictors which use different
features from the feature vector described in [7].

5.1 Instance Availability Prediction

We made a greedy evaluation of accuracy of predictions made through Bayes’
rule [7]. The accuracy was evaluated for all the resources in every resource class
and accuracy at class level is presented by taking their average. For one resource,
the prediction was evaluated on all the days of monitoring period (more than
300) and the accuracy was recorded on daily basis, where prediction query time
in a day was selected at random. Thus, every resource was evaluated for more
than 300 times, while the class-level daily accuracy was averaged from all the
resources in the resource class. The daily accuracy of predictions for three
resource classes using predictor hourOfDay cur [7] is presented in Figure 6(A).
For dedicated resources, the average accuracy was 97%. Accuracy for temporal
resources averaged to 90% and on-demand resources exhibited that of 94%.
We found for the all three classes that prediction accuracy decreases as more
historical data distant from the prediction query time is included in calculating
the priories.

72 COREGRID SYMPOSIUM

0 50 100 150 200 250 300
30

40

50

60

70

80

90

100

Days

Ac
cu

ra
cy

(%
ag

e)

Dedicated Res.
Temporal Res.
on-Demand Res.

0 50 100 150 200 250 300
0

20

40

60

80

100

Days

Ac
cu

ra
cy

 (%
ag

e)

Dedi Res.
Temp. Res
on-Dem Res.

Prediction Accuracy of Bayes’ Rule Prediction Accuracy of NN-Rule

A B

60 80 100 120 140 160 180
0

20

40

60

80

100

Pattern Length

Ac
cu

ra
cy

 (%
ag

e)

Dedicated Res.
Temporal Res.
on-Demand Res.

Prediction Accuracy of Pattern Matching

C

Figure 6: Resource instance availability prediction through Bayes’ rule, NN-rule and pattern
matching: Prediction accuracy comparisons of the three resource classes

A similar greedy setup was made for evaluation of instance availability pre-
dictions through NN-rule [7], as the same for Bayes’ rule. Prediction accuracy
results for the three resource classes using NN-rule are depicted in Figure 6(B).
The average accuracies were recorded as 99.98%, 82.4% and 98.4% respec-
tively for dedicated, temporal and on-demand resources at class level. The very
high prediction accuracy for dedicated and on-demand resources is due to their
high MTBF and high MTR, respectively . NN-rule gives higher accuracies for
instance availability predictions for all three resource classes as compared with
those through Bayes’ rule.

Accuracy of instance availability predictions through pattern matching was
also evaluated through a similar test phase. The accuracy results for the three
resource classes are shown in Figure 6(C). Pattern matching showed 94.41%
accuracy for dedicated resources, while the same for temporal and on-demand
resources was 68.13% and 73.34% respectively. The lower accuracy of tem-
poral resources is due to a higher variation in their patterns of (un)availability
over time. The pattern matching yielded the least accuracy of 78.63% at Grid
level, as compared with the three methods.

Resource Availability Comparison and Prediction 73

5.2 Duration Availability Prediction

Prediction accuracy results of the the three methods, for duration availability,
are evaluated extensively through a series of experiments. For every resource,
predictions were evaluated for the time durations starting from 10 min. to 24
hrs. with the increments of 5 min. Prediction for every duration was repeated
100 times, where date and time were randomly selected from the resource mon-
itoring duration. These 100 repetitions were later averaged to record accuracy
for that duration for the selected resource. Average accuracy for each time du-
ration on all resources in a resource class, was recorded as accuracy of the class
for that duration. The prediction accuracy of Bayes’ rule with the predictor
dayOfWeek using different amount of trace data, for the three resource classes
is shown in Figure 7(a). We have noted that the prediction accuracy decreases as
amount of historical data more distant from the prediction query time is included

0 10 20 30 40 50
0

20

40

60

80

100

Trace Data (weeks)

Ac
cu

ra
cy

 (%
ag

e)

Dedicated Res.
Temporal Res.
on-Demand Res.

(a) Prediction accuracy through Bayes’ rule using
different amount of trace data

10 500 1000 1500
0

20

40

60

80

100

Prediction Duration (min.)

Ac
cu

ra
cy

 (%
ag

e)

Dedicated Res.
Temporal Res.
on-Demand Res.

(b) Prediction accuracy through NN-rule for differ-
ent durations

60 80 100 120 140 160 180
0

20

40

60

80

100

Pattern Length (min.)

Ac
cu

ra
cy

 (%
ag

e)

Dedicated Res.
Temporal Res.
on-Demand Res.

(c) Prediction accuracy through Pattern Matching for
different pattern lengths

Figure 7: Accuracies comparison of duration availability predictions of the three resource classes
through different methods.

74 COREGRID SYMPOSIUM

while calculating priories. This was also conformed by ACF (auto-correlation
function) of availability durations(not shown here). The highest accuracy of
duration availability predictions was observed in class of dedicated resources,
which is due to their better stability for jobs of different durations, as shown in
Figure 1. Bayes’ rule exhibited a better accuracy of duration availability pre-
dictions for temporal resources than on-demand resources, which shows that
on-demand resources were made available for quite different time durations.

We present the accuracy of predictions for duration availability through NN-
rule for the time durations of 10min-24hrs. The Figure 7(b) presents the pre-
diction accuracy results at resource class level. Dedicated resources, as in all
other evaluations showed the highest accuracy, within the range of 79%−99%.
NN-rule prediction accuracy increases from a minimum of 64% to a maximum
of 93% for temporal resources, whereas, in case of on-demand resources, it
increases from a minimum of 36% to a maximum of 100%. The increase in
prediction accuracy by NN-rule, for temporal and on-demand resources is as
expected– because resources in these two classes were available for relatively
shorter time durations and NN-rule made availability predictions with higher
accuracy for longer durations than for smaller durations.

The average accuracy of predictions for different durations, through pattern
matching, using patterns of different lengths, are shown in the Figure 7(c). We
observed accuracies of 93.18%, 69.39% and 75.56% for dedicated, temporal
and on-demand resources respectively. We observed an increase in the accuracy
when the pattern length was increased. This shows that resources exhibit more
consistent behavior over longer time durations than shorter durations. Pattern
matching resulted in better accuracy than NN-rule for duration predictions.

6. Related Work

Several other studies characterize or model availability in different envi-
ronments like cluster of computers [3], multi-computers [13], meta-computers
(also called desktop Grids) [9], Grid [11], [2], super-computers [13], and peer-
to-peer systems [8]. Most of these studies are about early systems considering
only short term availability data, and ignoring machine availability policies.
The two most closely related studies to ours are [2] and [11]. These works
consider the availability characteristics at Grid level only, whereas we identify
different classes of resources based on their policies of availability in the Grid,
and analyze their properties on the class level, and achieve better representa-
tive aggregates. Another closely related study to ours is [16] that analyzes
resource availability through CPU failures, and finds its implications on large-
scale clusters. We further compare resources based on their daily availability,
hourly availability, MTBF, MTR, their dependability for different jobs and are

Resource Availability Comparison and Prediction 75

the first to compare resources based on their stability for jobs of different dura-
tions.

Predictions from availability models give probability of resource in available
state and are most of the times insufficient to decide whether the resource will
be available or not [7]. Works in [10], [15] and [11] have made predictions
based on previous weekday or weekend only, and have got moderate accuracy
in their predictions. In contrast we employ methods from pattern recognition
and classification, which exploit knowledge from our resource availability char-
acterization phase, and takes into account patterns from resource past behavior
as well as its current behavior, and yield very promising results.

7. Conclusion

Besides that the Grid technology is getting more matured day by day, differ-
ent policies for resource availability in the Grid, and resources’ working stability
raise serious issues about their suitability for different jobs. In this work we
compare resources based traditional and new metrics- their MTBF, MTR in
general and their stability and dependability for jobs of different durations in
particular. Different comparison criteria suit to different needs. We argue the
later two metrics better compare the resources considering the job durations.
Dedicated resources revealed the highest stability for all jobs of different du-
rations and showed the highest MTBF and the lowest MTR, the converse it
true for on-demand resources. Stability of temporal resources falls in the mid
range of other two resource classes, and they showed an almost equal MTBF
and MTR. Next, we find patterns in resource availability and make resource
instance and duration availability predictions by using three methods from pat-
tern recognition and classification; Bayes’ Rule, Nearest Neighbor Rule and
Pattern Matching. We extensively evaluated the accuracy for these methods
using different predictors and different amount of historical data. On average,
more than 90% and 70% accuracy is found for instance and duration predictions
respectively, when minimum of historical data was used.

As future work, we will try to integrate resource computational metrics
(MFlops and others) with availability metrics to come up with a unified met-
ric to compare the resources in a generic way as well. We would also like to
validate our resource availability prediction methods using availability traces
from other Grids. We also plan to evaluate improvements in job execution per-
formance through availability aware resource selection, and availability aware
data storage.

References

[1] The Austrian Grid Consortium. http://www.austriangrid.at.

76 COREGRID SYMPOSIUM

[2] Alexandru Iosup et al. On the dynamic resources availability in grids. In CCGrid, Rio de
Janeiro, Brazil, May 14-17, 2007.

[3] Anurag Acharya et al. The utility of exploiting idle workstations for parallel computation.
In international conference on measurement and modeling of computer systems, Seattle,
Washington, USA, 1997.

[4] Duda, Richard O. et al. Pattern Classification (2nd Edition). Wiley-Interscience, Novem-
ber 2000.

[5] C. Ebeling. An Introduction toReliability andMaintainability Engineering. McGraw-Hill,
Boston, MA, 1997.

[6] Farrukh Nadeem et al. Soft benchmarks-based application performance prediction using
a minimum training set. In e-Science 2006, Amsterdam, Netherlands.

[7] F. Nadeem, R. Prodan, and T. Fahringer. Characterizing, Modeling and Predicting Dy-
namic Resource Availability in a Large Scale Multi-Purpose Grid. In Proc. of CCGrid
2008, Lyon, France, May 2008.

[8] R. Bhagwan et al. Understanding availability. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems, Feb 2003.

[9] R. Wolski et al. Automatic methods for predicting machine availability in desktop grid
and peer-to-peer systems. In CCGrid2004, Chicago, Illinois, USA.

[10] X. Ren and R. Eigenmann. Empirical studies on the behavior of resource availability in
fine-grained cycle sharing systems. In International Conference on Parallel Processing,
Washington, DC, USA, 2006.

[11] B. Rood and M. J. Lewis. Multi-state grid resource availability characterization. In
International Conference on Grid Computing, Austin, TX, September 17-19, 2007.

[12] B. Schroeder and G. A. Gibson. A large-scale study of failures in high-performance
computing systems. In International Conference on Dependable Systems and Networks,
Washington, DC, USA, 2006.

[13] D. Tang and R. K. Iyer. Dependability measurement and modeling of a multicomputer
system. IEEE Trans. Comput., 42(1), 1993.

[14] Thomas Fahringer et al. Askalon: a grid application development and computing envi-
ronment. In GRID05.

[15] Xiaojuan Ren et al. Resource availability prediction in fine-grained cycle sharing systems.
In International Performance and Distributed Computation, 2006.

[16] Yanyong Zhang et al. Performance implications of failures in large-scale cluster schedul-
ing. 2004.

[17] D. Kondo et al. Characterizing and evaluating desktop grids: An empirical study, 2004.

ONLINE HIERARCHICAL JOB SCHEDULING ON
GRIDS

Andrei Tchernykh
Computer Science Department, CICESE Research Center, Ensenada, BC, México

chernykh@cicese.mx

Uwe Schwiegelshohn
Robotics Research Institute, Technische Universität Dortmund, Dortmund, Germany

uwe.schwiegelshohn@udo.edu

Ramin Yahyapour
IT and Media Center, Technische Universität Dortmund, Dortmund, Germany

ramin.yahyapour@udo.edu

Nikolai Kuzjurin
Institute of System Programming RAS, Moscow, Russia

nnkuz@ispras.ru

Abstract In this paper, we address non preemptive online scheduling of parallel jobs on
a Grid. The Grid consists of a large number of identical processors that are
divided into several machines. We consider a Grid scheduling model with two
stages. At the first stage, jobs are allocated to a suitable machine while at the
second stage, local scheduling is applied to each machine independently. We
discuss strategies based on various combinations of allocation strategies and
local scheduling algorithms. Finally, we propose and analyze a relatively simple
scheme named adaptive admissible allocation. This includes competitive analysis
for different parameters and constraints. We show that the algorithm is beneficial
under certain conditions and allows an efficient implementation in real systems.
Furthermore, a dynamic and adaptive approach is presented which can cope with
different workloads and Grid properties.

Keywords: Grid Computing, Online Scheduling, Resource Management, Algorithmic Anal-
ysis, Job Allocation

78 COREGRID SYMPOSIUM

1. Introduction

Due to the size and dynamic nature of Grids, allocating computational jobs
to available Grid resources requires an automatic and efficient process. Vari-
ous scheduling systems have been proposed and implemented in different types
of Grids. However, there are still many open issues in this field, including
the consideration of multiple layers of scheduling, dynamicity, and scalability.
Grids are typically composed of heterogeneous resources which are decentral-
ized and geographically dispersed. Academic studies often propose a com-
pletely distributed resource management system, see, for instance, Uppuluri et
al. [13] while real installations favor a combination of decentralized and cen-
tralized structures, see, for instance, GridWay [4]. A hierarchical multilayer
resource management can represent such a system well. Therefore, we use
this model to find a suitable tradeoff between a fully centralized and a fully
decentralized model. The highest layer is often a Grid-level scheduler that
may have a more general view of the resources while the lowest layer is the
local resource management system that manages a specific resource or set of
resources, see Schwiegelshohn and Yahyapour [10]. Other layers may exist in
between. At every layer, additional constraints and specifications must be con-
sidered, for instance, related to the dynamics of the resource situation. Thus,
suitable scheduling algorithms are needed to support such multilayer structures
of resource management.

Grids are typically based on existing scheduling methods for multiprocessors
and use an additional Grid scheduling layer [10]. The scheduling of jobs on
multiprocessors is generally well understood and has been studied for decades.
Many research results exist for different variations of this single system schedul-
ing problem; some of them provide theoretical insights while others give hints
for the implementation of real systems. However, the scheduling in Grids is
almost exclusively addressed by practitioners looking for suitable implemen-
tations. There are only very few theoretical results on Grid scheduling and
most of them address divisible load scheduling like, for instance, Robertazzi
and Yu [7].

In this paper, we propose new Grid scheduling approaches and use a theoret-
ical analysis to evaluate them. As computational Grids are often considered as
successors and extensions of multiprocessors or clusters we start with a simple
model of parallel computing and extend it to Grids. One of the most basic
models due to Garey and Graham [2] assumes a multiprocessor with identical
processors as well as independent, rigid, parallel jobs with unknown processing
times, where a suitable set of concurrently available processors exclusively ex-
ecutes this job. Although this model neither matches every real installation nor
all real applications the assumptions are nonetheless reasonable. The model
is still a valid basic abstraction of a parallel computer and many applications.

Online Hierarchical Job Scheduling on Grids 79

Our Grid model extends this approach by assuming that the processors are ar-
ranged into several machines and that parallel jobs cannot run across multiple
machines. The latter assumption is typically true for jobs with extensive com-
munication among the various processors unless special care has been devoted
to optimize the code for a multisite configuration.

While a real Grid often consists of heterogeneous parallel machines, one
can argue that an identical processor model is still reasonable as most modern
processors in capacity computing mainly differ in the number of cores rather
than in processor speed. Our model considers two main properties of a Grid:
separate parallel machines and different machine sizes. Therefore, the focus of
this paper is on these properties of Grids.

From a system point of view, it is typically the goal of a Grid scheduler to
achieve some kind of load balancing in the Grid. In scheduling theory, this is
commonly represented by the objective of makespan minimization. Although
the makespan objective is mainly an offline criterion and has some shortcom-
ings particularly in online scenarios with independent jobs, it is easy to handle
and therefore frequently used even in these scenarios, see, for instance, Al-
bers [1]. Hence, we also apply this objective in this paper. For such a model,
Schwiegelshohn et al. [9] showed that the performance of Garey and Graham’s
list scheduling algorithm is significantly worse in Grids than in multiprocessors.
They present an online non-clairvoyant algorithm that guarantees a competi-
tive factor of 5 for the Grid scenario where all available jobs can be used for
local scheduling. The offline non-clairvoyant version of this algorithm has an
approximation factor of 3. This "one-layer" algorithm can be implemented in
centralized fashion or use a distributed "job stealing" approach. Although jobs
are allocated to a machine at their submission times they can migrate if another
machine becomes idle.

In this paper, we use a two layer hierarchical online Grid scheduling model.
Once a job is allocated to a machine it must be scheduled and executed on this
machine, that is, migration between machines is not allowed. Tchernykh et
al. [11] considered a similar model for the offline case and addressed the per-
formance of various 2-stage algorithms with respect to the makespan objective.
They present algorithms with an approximation factor of 10.

In Section 2, we present our Grid scheduling model in more details. The
algorithms are classified and analyzed in Section 3. We propose a novel adaptive
two-level admissible scheduling strategy and analyze it in Section 4. Finally,
we conclude with a summary and an outlook in Section 5.

2. Model

As already discussed, we address an online scheduling problem with the ob-
jective of minimizing the makespan: n parallel jobsJ1 ,J2, . . .must be scheduled

80 COREGRID SYMPOSIUM

on m parallel machines N1, N2, . . . , Nm. mi denotes the number of identical
processors of machine Ni . W.l.o.g. we index the parallel machines in ascending
order of their sizes m1 ≤ m2 ≤ ... ≤ mm, and introduce m0 = 0.

Each job Jj is described by a triple (rj ,sizej ,pj): its release date rj ≥ 0, its
size 1 ≤ sizej ≤ mm that is referred to as its degree of parallelism, and its
execution time pj . The release date is not available before a job is submitted,
and its processing time is unknown until the job has completed its execution
(non-clairvoyant scheduling).

We assume that job Jj can only run on machine Ni if sizej ≤ mi holds,
that is, we do not allow multi-site execution and co-allocation of processors
from different machines. Finally, g(Jj) = Ni denotes that job Jj is allocated
to machine Ni. Let ni be the number of jobs allocated to the machine Ni.

We assume a space sharing scheduling mode as this is typically applied on
many parallel computers. Therefore, a parallel job Jj is executed on exactly
sizej disjoint processors without preemptions.

Let pmax be max1≤j≤n{pj}. Further, Wj = pj · sizej is the work of job Jj ,
also called its area or its resource consumption. Similarly, the total work of a
job set I is WI =

∑
Jj∈I Wj . cj(S) denotes the completion time of job Jj in

schedule S. We omit schedule S if we can do so without causing ambiguity.
All strategies are analyzed according to their competitive factor for makespan

optimization. Let C∗
max and Cmax(A) denote the makespan of an optimal sched-

ule and of a schedule determined by strategy A, respectively. The competitive
factor of strategy A is defined as ρA = sup Cmax(A)

C∗
max

for all problem instances.
The notation GP m describes our Grid machine model. In the short threefield

notation machine model-constraints-objective proposed by Graham et al. [3],
this problem is characterized as GPm|rj , sizej |Cmax. We use the notation
MPS to refer to this problem while the notation PS describes the parallel job
scheduling on a single parallel machine (Pm|rj, sizej |Cmax).

3. Classification of Algorithms

In this section, we first split the scheduling algorithm into an allocation
part and a local scheduling part. Then we introduce different strategies to
allocate jobs to machines. We classify these strategies depending on the type
and amount of information they require. Finally, we analyze the performance
of these algorithms.

3.1 Two Layer MPS Lower Bound

Before going into details we add some general remarks about the approxi-
mation bounds of MPS. We regard MPS as two stage scheduling strategy:
MPS = MPS Alloc+ PS. At the first stage, we allocate a suitable machine
for each job using a given selection criterion. At the second stage, algorithm PS

Online Hierarchical Job Scheduling on Grids 81

is applied to each machine independently for jobs allocated during the previous
stage.

It is easy to see that the competitive factor of the MPS algorithm is lower
bounded by the competitive factor of the best PS algorithm. Just consider a
degenerated Grid that only contains a single machine. In this case, the compet-
itive factors of the MPS algorithm and the best PS algorithm are identical as
there is no need for any allocation stage.

But clearly, an unsuitable allocation strategy may produce bad competitive
factors. Just assume that all jobs are allocated to a single machine in a Grid
with k identical machines. Obviously, the competitive factor is lower bounded
by k.

The best possible PS online non-clairvoyant algorithm has a tight competi-
tive factor 2 − 1/m with m denoting the number of processors in the parallel
system; see Naroska and Schwiegelshohn [6]. Hence, the lower bound of a
competitive factor for any general two-layer online MPS is at least 2 − 1/m.

Schwiegelshohn et al. [9] showed that there is no polynomial time algorithm
that guarantees schedules with a competitive bound < 2 for GP m|sizej|Cmax

and all problem instances unless P = NP . Therefore, the multiprocessor
list scheduling bound of 2 − 1/m, see Garey and Graham [2] for concurrent
submission as well as Naroska and Schwiegelshohn [6] for online submission,
does not apply to Grids. Even more, list scheduling cannot guarantee a con-
stant competitive bound for all problem instances in the concurrent submission
case [9, 11].

3.2 Job Allocation

Now, we focus on job allocation with the number of parallel machines and
the information about the size of each machine being known. Further, we
distinguish four different levels of additionally available information for job
allocation.

Level 1: The job load of each machine, that is the number ni of jobs waiting
to run on machine Ni, is available. We use the job allocation strate-
gies Min L and Min LP . Min L allocates a job to the machine with
the smallest job load. This strategy is similar to static load balancing.
Min LP takes into account the number of processors and selects the
resource with the lowest job load per processor (arg{min1≤i≤m{ ni

mi
}}).

Note that neither strategy considers the degree of parallelism or the pro-
cessing time of a job.

Level 2: Additionally to the information of Level 1, the degree of parallelism
sizej of each job is known. The Min PL strategy selects a machine with
the smallest parallel load per processor (arg{min1≤i≤m{P

g(Jj)=Ni

sizej

mi
}}).

82 COREGRID SYMPOSIUM

Level 3: In addition to the information of Level 2, we consider clairvoy-
ant scheduling, that is, the execution time of each job is available. The
Min LB strategy allocates a job to the machine Ni with the least re-
maining total workload of all jobs already allocated to this machine, that
is

arg{ min
1≤i≤m

{
∑

g(Jj)=Ni

sizej · pj

mi
}}.

If the actual processing time pj of job Jj is not available, we may use
an estimate of the processing time instead. Such an estimate may be
generated automatically based on history files or provided by the user
when the job is submitted.

Level 4: We have access to all information of Level 3 and to all local schedules
as well. The Min CT job strategy allocates job Jj to the machine with
the earliest completion time of this job using the existing schedules and
the job queues [8, 14].

Levels 1 and 2 describe non-clairvoyant problems. Strategies of Levels 1 to
3 are based only on the parameters of jobs, and do not need any information
about local schedules.

3.3 Two Layer MPS Strategies

In this section, we analyze a two layer online MPS for different PS al-
gorithms and the MPS-allocation strategies Min L, Min LP , Min PL,
Min LB, and Min CT .

Tchernykh et al. [11] discussed the combination of allocation strategies with
the simple online scheduling algorithm FCFS, that schedules jobs in the or-
der of their arrival times. Clearly, this strategy cannot guarantee a constant
approximation factor as FCFS is already not able to do this. Even if all jobs
are available at time 0 and they are sorted in descending order of the degree of
parallelism, we cannot achieve a constant competitive factor [11, 9].

Let us consider now the case of an arbitrary online local PS algorithm.
Based on the simple example considered by Tchernykh et al. [11] for offline
strategies and Schwiegelshohn et al. [9] for online strategies, it can be shown
that Min L, Min LP , and Min PL allocation strategies combined with PS
cannot guarantee a constant approximation factor of MPS in the worst case.

Let us now consider the two allocation strategies Min LB and Min CT
that take into account job execution times. Fig. 1 shows an example of sets
of machines and a set of jobs for which constant approximation factors are
not guaranteed for Min LB + PS and Min CT + PS. In this figure, the
vertical axis represents time while the bars and their widths denote machines
and their numbers of processors, respectively. The example has an optimal

Online Hierarchical Job Scheduling on Grids 83

makespan of 2, see Fig. 1. If the jobs are released in ascending order of their
degrees of parallelism, algorithms Min LB+PS and Min CT +PS allocate
them to machines as shown in Fig. 2. If the processing time is identical for all
jobs the makespans of algorithms Min LB + PS and Min CT + PS equal
the number of job groups with different degrees of parallelism. Additional
information about the schedule in each machine (application of Min CT)
does not help to improve the worst case behavior of MPS. Results are the
similar for the offline [11] and the online [9] cases.

Figure 1: Optimal schedule of a bad instance.

Figure 2: Min LB + PS schedule for the instance of Fig.1.

4. Adaptive Admissible Allocation Strategy

Based on the example shown in Figure 2, it can be seen that one reason
of the inefficient online job allocation is the occupation of large machines by
sequential jobs causing highly parallel jobs to wait for their execution.

Tchernykh et al. [11] proposed a relatively simple scheme named admissi-
ble selection that can be efficiently implemented in real systems. This scheme
excludes certain machines with many processors from the set of machines avail-
able to execute jobs with little parallelism.

84 COREGRID SYMPOSIUM

Figure 3: Concept of the admissible model

Let the machines be indexed in non-descending order of their sizes (m1 ≤
m2 ≤ ... ≤ mm). We define f(j) = first(j) to be the smallest index i such
that mi ≥ sizej holds for job Jj . Note that due to our restriction sizej ≤
mm∀Jj , we have l ≤ m. The set of available machines Mavailable(j) that are
available for allocation of job Jj corresponds to the set of machine indexes
s(f(j),m) = {f(j), f(j) + 1, . . . ,m}, see Fig. 3. Obviously, the total set
of machines M − total is represented by the integer set s(1,m) = 1, . . . ,m.
m(f, l) =

∑l
i=f mi is the total number of processors that are in machines mf

to ml.
Tchernykh et al. [11] defined the set Madmissible(j) of admissible machines

for a job Jj to be the machines with their indexes being in the set s(f(j), r(j)),
see Fig. 3. r(j) is the smallest number with m(f(j), r(j)) ≥ 1

2m(f(j),m).
In this paper, the definition is generalized by introducing a new parameter
0 ≤ a ≤ 1 that parameterizes the admissibility ratio used for the job allocation.
Hence, we call s(f(j), r(j)) the index set of admissible machines if r(j) is the
minimum index such that m(f)j), r(j)) ≥ a · m(f(j),m) holds. The choice
a = 0.5 produces the original definition of Tchernykh et al. [11].

A worst case analysis of adaptive admissible selection strategies is presented
in Section 4.2.

4.1 Workload

Before going into details of admissible job allocation strategies, we define
different types of possible workloads. First, we combine all machines of the
same size into group. Let i be a machine index such that mi−1 < mi. Then
group Gi contains all machines Mj with mj = mi. The size of Gi is the total
number of processors of all machines in Gi. Further, we can partition the set of
all jobs into sets Yi such that Jj ∈ Yi if and only if mi−1 < sizej ≤ mi holds,
that is, all jobs of Yi can be executed by machines of Gi but do not fit on any
machine of a group Gh with h < i. Note that some sets Yi may be empty.

Online Hierarchical Job Scheduling on Grids 85

The workload is balanced for a set of machines G =
⋃k

i=1 Gi with some
k > 0 if the ratio of the total work of set Yi and the size of group Gi is the same
for all groups of G.

The workload is perfect for G if it is balanced and each set Yi can be scheduled
in a nondelay fashion on Gi such that makespans of all machines in G are
identical. Fig. 1 shows an example of a balanced workload for each set of
machines that do not include the last machine.

4.2 Analysis

In this section, we consider the allocation strategies of Section 3.3 for ad-
missible machines. Formally, we denote this extension by appending the letter
a to the strategy name, for instance, Min L− a. Tchernykh et al. [11] showed
that strategies (Min L−a,Min PL−a)+FCFS cannot guarantee constant
approximations for a = 0.5. This result also holds for arbitrary a and algorithm
Best PS. We already showed in Section 3.3 that Min LB cannot guarantee
a constant approximation even in combination with the Best PS. We now
consider the case when the selection of a suitable machine for executing job Jj

is limited by its admissible set of machines Madmissible(j).

4.2.1 Online Allocation and Online Local Scheduling. First, we deter-
mine the competitive factor of algorithm Min LB − a + Best PS.

Theorem 1 Assume a set of machines with identical processors, a set of
rigid jobs, and admissible allocation range 0 ≤ a ≤ 1. Then algorithm
Min LB − a + Best PS has the competitive factor

ρ ≤
⎧⎨
⎩

1 + 1
a2 − 1

m(1,m) for a ≤ m(f,m)
m(f0,m)

1 + 1
a(1−a) − 1

m(1,m) for a > m(f,m)
m(f0,m)

with 1 ≤ f0 ≤ f ≤ m being parameters that depend on the workload, see
Fig. 4.

Proof. Let us assume that the makespan of machine Nk is also the makespan
Cmax of the Grid. Then let job Jd be the last job that was added to this machine.
We use the notations f = f(d) and r = r(d). If , . . . , Ir are the sets of jobs
that had already been scheduled on machines Nf , . . . , Nr before adding job Jd.
Remember that machines Nf , . . . , Nr constitute the set Madmissible(d). Since

Jd was added to machine Nk, Min LB − a guarantees
WIk
mk

≤ WIi
mi

for all

86 COREGRID SYMPOSIUM

1 f0 f r mr0

a ¢m(f0;m)

a ¢m(f;m)

(1 ¡ a) ¢m(f0;m)

(1 ¡ a) ¢m(f;m)

11 f0f0 ff rr mmr0r0

a ¢m(f0;m)a ¢m(f0;m)

a ¢m(f;m)a ¢m(f;m)

(1 ¡ a) ¢m(f0;m)(1 ¡ a) ¢m(f0;m)

(1 ¡ a) ¢m(f;m)(1 ¡ a) ¢m(f;m)

Figure 4: Admissible allocation with factor a

i = f, . . . , r. Therefore, we have

W (f, r) =
r∑

i=f

WIi =
r∑

i=f

WIi

mi
mi

≥
r∑

i=f

WIk

mk
mi =

WIk

mk

r∑
i=f

mi =
WIk

mk
m(f, r).

Let W opt
idle be the idle workload space of the optimal solution on the machine

Nk. We use the notation W
′
i = Wi + W opt

idle and obtain

W
′
(f, r) =

r∑
i=f

(Wi + W opt
idle) =

r∑
i=f

W
′
i =

r∑
i=f

W
′
i

mi
mi

≥
r∑

i=f

W
′
k

mk
mi ==

W
′
k

mk

r∑
i=f

mi =
W

′
k

mk
m(f, r). (1)

It is known from the literature [5, 12] that in the schedule of machine Nk,
there are two kinds of time slots which can be combined conceptually into two
successive intervals C1 and C2, see Fig. 5.

Let sizemax be the maximum size of any job assigned to machine Nk. Then
the intervals correspond to the parts of the schedule when at most sizemax − 1
processors are idle and when strictly more than sizemax−1 processors are idle,
respectively.

Tchernykh et al. [12] showed that C2 is limited by the maximum job execution
time pmax and that for an arbitrary list schedule,
Wk ≥ (mk−sizemax+1)C1+C2 yields the competitive bound 2mk−sizemax

mk−sizemax+1 .

Algorithm Best PS produces the makespan C = Wk+W opt
idle+Widle

mk
with

Widle being the additional idle space due to Best PS. To be 2− 1
m competitive,

algorithm Best PS must generate schedules that increase the idle space of the

Online Hierarchical Job Scheduling on Grids 87

Figure 5: Scheduling Rigid Jobs in Space Sharing Mode [12]

optimal schedule by not more than
Widle ≤ pmax · (mk − 1).

Hence, for W
′
k = Wk + W opt

idle and W
′
k ≥ mk ·C1 + C2, we obtain an upper

bound of the total completion time:

C ≤ W
′
k + pmax · (mk − 1)

mk
=

W
′
k

mk
+ pmax · (1 +

1
mk

) (2)

Due to C∗
max = W

′
k

mk
and C∗

max ≥ pmax, Equation 2 implies a competitive

bound 2 − 1
m for single machine scheduling.

Let Jb be the job having the smallest size among all jobs executed at machines
Nf , . . . , Nr. We use the notation f0 = fb. Hence jobs packed at Nf , . . . , Nr

cannot be allocated to a machine with a smaller index than f0. As Jb is executed
on one of the machines Nf , . . . , Nr we have rb ≥ f , see Fig. 4 and C∗

max ≥
W

′
(f,r)

m(f0,r) . Substituting Equation 1 in this formula, we have

C∗
max ≥ W

′
km(f, r)

mkm(f0,m)
.

Finally, we consider two cases:

• a ≤ m(f,m)
m(f0,m)

From our definition m(f, r) ≥ a · m(f,m), we obtain m(f0,m) ≤
m(f, r)/a2. This yields

C∗
max ≥ W

′
k · m(f, r)

mk · m(f0,m)
≥ W

′
k · a2

mk

88 COREGRID SYMPOSIUM

As we have C∗
max ≥ pmax, Equation 2 implies

ρ ≤ W
′
k

mkC∗
max

+ pmax

1 − 1
mk

C∗
max

≤ 1 +
1
a2

− 1
m(1,m)

• a > m(f,m)
m(f0,m)

We have m(f0,m) ≤ m(f,m) + a · m(f0,m), see Fig. 4. This yields

C∗
max ≥ W

′
k · m(f, r)

mk · m(f0,m)
≥ W

′
k · a · m(f,m)

mk · m(f,m)
1−a

=
W

′
k · a · (1 − a)

mk

and

ρ ≤ W
′
k

mkC∗
max

+ pmax

1 − 1
mk

C∗
max

≤ 1 +
1

a · (1 − a)
− 1

m(1,m)

(End)
Note that both bounds produce the same result ρ = 5− 1

m(1,m) for a = 0.5.

10 20 30 40 50 60 70 80 90 100

2

4

6

8

10

12

14

16

18

20

a

Figure 6: ρ ≤ 1 + 1
a2 − 1

m(1,m)

10 20 30 40 50 60 70 80 90 100

2

4

6

8

10

12

14

16

18

20

a

Figure 7: ρ ≤ 1 + 1
a(1−a)

− 1
m(1,m)

Fig. 6 to 8 show the bounds of the competitive factor of strategy Min LB −
a + Best PS as a function of the admissible value a in percent.

4.2.2 Worst Case Performance Tune Up. Finally, we analyze the worst
case performance for various workload types. We consider two intervals for
the admissible factor a: (0, m(f,m)

m(f0,m)] and (m(f,m)
m(f0,m) , 1]. We distinguish only few

cases of workload characteristics to determine workload dependent worst case
deviations.

• f = m and f0 = 1 produce mmPm
i=1 mi

≤ a ≤ 1 and ρ ≤ 1 + 1
a(1−a) −

1
m(1,m) . These characteristics are normal for a balanced workload. Clearly,

Online Hierarchical Job Scheduling on Grids 89

10 20 30 40 50 60 70 80 90 100

2

4

6

8

10

12

14

16

18

20

a

Figure 8: ρ ≤ 1 + 1
a2 − 1

m(1,m)
for a ≤ 0.5 and ρ ≤ 1 + 1

a(1−a)
− 1

m(1,m)
for a > 0.5

if a = 1 holds, as in traditional allocation strategies, a constant approx-
imation cannot be guaranteed. The example in Fig. 2 shows such a
schedule in which highly parallel jobs are starving due to jobs with little
parallelism. However, a constant approximation ρ = 5 − 1

m(1,m) can be
achieved with a = 0.5.

• Iff = f0 = 1holds we say that the workload ispredominantly sequential.
In such a case, we have ρ ≤ 1 + 1

a2 − 1
m(1,m) . For a = 1, we obtain

ρ = 2 − 1
m(1,m) . This bound is equal to the bound of list scheduling on

a single machine with the same number of processors. Hence, for this
type of workload, Min LB is the best possible allocation algorithm.

• If f = f0 = m holds we say that the workload is predominantly parallel.
In such a case, we have ρ ≤ 1 + 1

a2 − 1
m(1,m) . Again a = 1 yields

ρ = 2− 1
m(1,m) . Therefore, Min LB is also the best possible allocation

algorithm for this type of workload.

• In a real Grid scenario, the admissible factor can be dynamically adjusted
in response to the changes in the configuration and/or the workload. To
this end, the past workload within a given time interval can be analyzed
to determine an optimal admissible factor a. The time interval for this
adaptation should be set according to the dynamics in the workload char-
acteristics and in the Grid configuration. One can iteratively approximate
the optimal admissible factor.

5. Concluding Remarks

Scheduling in Grids is vital to achieve efficiently operating Grids. While
scheduling in general is well understood and has been subject of research for
many years, there are still only few theoretical results available. In this paper,

90 COREGRID SYMPOSIUM

we analyze the Grid scheduling problem and present a new algorithm that is
based on an adaptive allocation policy. Our Grid scheduling model uses a two
layer hierarchical structure and covers the main properties of Grids, for instance,
different machine sizes and parallel jobs. The theoretical worst-case analysis
yields decent bounds of the competitive ratio for certain workload configura-
tions. Therefore, the proposed algorithm may serve as a starting point for future
heuristic Grid scheduling algorithms that can be implemented in real computa-
tional Grids. In future work, we intend to evaluate the practical performance of
the proposed strategies and their derivatives. To this end, we plan simulations
using real workload traces and corresponding Grid configurations. Further, we
will compare our approach with other existing Grid scheduling strategies which
are typically based on heuristics.

References

[1] S. Albers. Better bounds for online scheduling. SIAM Journal on Computing, 29(2):459-
473, 1999.

[2] M. Garey and R. Graham. Bounds for multiprocessor scheduling with resource constraints.
SIAM Journal on Computing, 4(2):187-200, 1975.

[3] R. Graham, E. Lawler, J. Lenstra, and A.R. Kan. Optimization and approximation in
deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics,
15:287-326, 1979.

[4] E. Huedo, R.S. Montero and I.M. Llorente. A modular meta-scheduling architecture for
interfacing with pre-WS and WS Grid resource management services. Future Generation
Computing Systems 23(2):252-261, 2007.

[5] E. Lloyd. Concurrent task systems, Operational Research 29(1):189-201, 1981.

[6] E. Naroska and U. Schwiegelshohn. On an online scheduling problem for parallel jobs.
Information Processing Letters, 81(6):297-304, 2002.

[7] T. Robertazzi and D. Yu. Multi-Source Grid Scheduling for Divisible Loads. Proceedings
of the 40th Annual Conference on Information Sciences and Systems, pages 188-191,
2006.

[8] G. Sabin, R. Kettimuthu, A. Rajan, and P. Sadayappan. Scheduling of Parallel Jobs in a
Heterogeneous Multi-Site Environment, Proceedings of the 8th International Workshop
on Job Scheduling Strategies for Parallel Processing (JSSPP), pages 87-104, 2003.

[9] U. Schwiegelshohn, A. Tchernykh, and R. Yahyapour. Online Scheduling in Grids,
Proceedings of the IEEE International Parallel and Distributed Processing Symposium
(IPDPS’2008), CD-ROM, 2008.

[10] U. Schwiegelshohn and R. Yahyapour. Attributes for communication between grid
scheduling instances. In J. Nabrzyski, J. Schopf, and J. Weglarz (Eds.), Grid Resource
Management - State of the Art and Future Trends, Kluwer Academic, pages 41-52, 2003.

[11] A. Tchernykh, J. Ramı́rez, A. Avetisyan, N. Kuzjurin, D. Grushin, and S. Zhuk. Two Level
Job-Scheduling Strategies for a Computational Grid. In Parallel Processing and Applied
Mathematics, Wyrzykowski et al. (Eds.): Proceedings of the Second Grid Resource Man-
agement Workshop (GRMW’2005) in conjunction with the Sixth International Conference

Online Hierarchical Job Scheduling on Grids 91

on Parallel Processing and Applied Mathematics - PPAM 2005. LNCS 3911, Springer-
Verlag, pages 774-781, 2006.

[12] A. Tchernykh, D. Trystram, C. Brizuela, and I. Scherson. Idle Regulation in Non-
Clairvoyant Scheduling of Parallel Jobs to be published in Discrete Applied Mathematics,
2008.

[13] P. Uppuluri, N. Jabisetti, U. Joshi, and Y. Lee. P2P Grid: Service Oriented Framework for
Distributed Resource Management. Proceedings of the 2005 IEEE International Confer-
ence on Services Computing (SCC’05), pages 347-350, 2005.

[14] S. Zhuk, A. Chernykh, N. Kuzjurin, A. Pospelov, A. Shokurov, A. Avetisyan, S. Gais-
saryan, D. Grushin. Comparison of Scheduling Heuristics for Grid Resource Broker.
Proceedings of the third International IEEE Conference on Parallel Computing Systems
(PCS2004), pages 388-392, 2004.

GLOBAL OPTIMIZATION FOR SCHEDULING
MULTIPLE CO-RESERVATIONS IN THE GRID

Thomas Röblitz
Zuse Institute Berlin
Takustr. 7, D-14195 Berlin, Germany

roeblitz@zib.de

CoreGRID Institute on Resource Management and Scheduling

Abstract Co-reservations are an efficient means to support guarantees on the allocation of
resources in order to execute complex distributed application scenarios. Schedul-
ing multiple moldable co-reservations involves several steps leading to guaran-
tees of resource allocation. Previous work has provided either mechanisms for
individual steps only or for selecting co-reservations, but with more limited ap-
plication scenarios. In this work, we extend previous work by studying the
problem as generic optimization problem, by developing a mixed integer linear
programming model which allows more freedom in the specification of the goals
of requests, resources and the broker, and by performing extensive experiments
to analyze important parameters on the time to solve various problem instances.

Keywords: Co-reservation, Grid Resource Management, Workflow Management, Optimiza-
tion, Mixed Integer Linear Programming.

94 COREGRID SYMPOSIUM

1. Introduction

In many disciplines of science and business, large scale simulations and
workflows for analyzing petascale data sets necessitate the adoption of Grid
technologies to meet their demanding resource requirements. The use of Grid
resources, however, poses new challenges, because of their heterogeneity, ge-
ographic distribution and autonomous management. Specifically, we consider
complex applications developed within the AstroGrid-D project [4]such as large
simulations of black holes with Cactus or distributed observations of astronomic
objects with robotic telescopes. These applications require the co-allocation of
multiple Grid resources. Figure 1(a) and 1(b) exemplify two types of applica-
tions and the temporal relationships among the applications’ parts.

(a) Parallel application requiring the input
data to be transferred from a remote archive.

(b) Workflow application with transferring of in-
put data, streaming of intermediate results and co-
allocation of licenses.

Figure 1: Parallel and workflow application scenarios.

Because Grid resources are autonomously managed, the allocation of them
at the same time or in some sequence with hard time constraints cannot be
guaranteed by standard Grid job management schemes. That is, a broker decides
where to submit a job, but has no control on when the job is actually executed.
This problem can be circumvented by acquiring reservations for the required
resources. A reservation guarantees that a specific resource can be allocated to
a request at the desired time.

This paper contributes a generic approach for modeling the co-reservation
problem. In particular, it supports flexible constraints and objectives of all
involved parties – users submitting requests, providers of resources and the
broker of a virtual organization. We consider requests to be flexible in four
dimensions – the resource to reserve, the start time, the service level and the
duration. However, once a co-reservation has been acquired, its parameters
may not be changed without confirmation. The relationships among the parts
of an application are modeled by temporal and spatial relationships.

Outline. The remainder of the paper is structured as follow. Firstly, we briefly
present a framework for processing requests for co-reservations in Section 2.

Global Optimization for Scheduling Multiple Co-Reservations in the Grid 95

In Section 3, we incrementally develop a mixed integer linear programming
model for the third processing phase. Thereafter, we present the results of an
extensive experimental evaluation of solving various problem instances with
CPLEX 10.1 in Section 4. We discuss related work in Section 5 and conclude
in Section 6.

2. Framework for Processing Requests

Figure 2 shows a framework for processing co-reservation requests. The
three main components are the Grid Reservation Service (GRS), the Resource
Catalog (RC) and the Local Reservation Service (LRS). The Grid Reservation

Figure 2: Components of the reservation framework and their interplay in the processing of a
co-reservation request.

Service (GRS) receives co-reservation requests and coordinates their process-
ing. A GRS may be deployed on all levels in the Grid resource management
hierarchy – from small groups of researchers to large virtual organizations.
Thus, it can incorporate domain specific knowledge about both the applications
of the researchers and the resources they wish to use. After receiving a request
(step (1)), the GRS performs a matchmaking on the static properties of requests
and resources (step (2)). Next, it sends flexible probe requests to the LRS of
each matched resource (step (3)). The LRS determines reservation candidates
for given ranges of start times, service levels and durations. For each reserva-
tion candidate, the LRS calculates certain metrics – like availability, reservation
fee, cancelation fee, etc. – and sends the information back to the GRS [10–

96 COREGRID SYMPOSIUM

11](step (4)). When the GRS has received the reservation candidates, it selects
the best combination (step (5)) and finally acquires the reservations (step (6)).

In this work, we study methods for selecting the best combination (step (5)).

3. Modeling the Application Scenarios

In this section, we explore the modeling of the application scenarios as a
linear problem (LP) and a mixed integer linear problem (MILP). Independent
of the chosen tool for solving problem instances, a solution must provide the
same information – for each atomic request, it states the assigned resource, the
allocated start time and duration as well as the agreed service level.

We consider three classes of problem instances: single-atomic-request (SAR,
cf. Sec. 3.1), multiple-atomic-requests (MAR, cf. Sec. 3.2) and multiple-
co-requests (MCR, cf. Sec. 3.3). The classes SAR and MAR are used to
incrementally develop the full model MCR, which implements a mixed integer
linear program of the co-reservation problem. With one exception, we assume
that for each atomic request r multiple resources Sr are found through the
matchmaking (step (2)). As we will see, linear programming can only be
applied to the class of single atomic requests for which only a single resource
was obtained from the matchmaking step. For each class and the availability
of multiple resources, we study mixed integer linear programming (MILP).

3.1 Single Atomic Requests

First, we develop a linear programming model for the unusual scenario in-
volving a single request and a single resource. Thereafter, we extend the model
to fully support the class of single atomic requests by modeling multiple re-
sources with a mixed integer linear programming model.

Linear programming. We restrict the number of requests as well as the
number of resources to one. Let T ⊂ R≥0, Q ⊂ R≥0 and D ⊂ R≥0 denote
the sets of the start times, the service levels and the durations, respectively. We
assume that all properties, constraints and objectives are linear functions, i.e.,
f(t, q, d) := c1t + c2q + c3d + c4 with t ∈ T , q ∈ Q, d ∈ D and the coef-
ficients c1,2,3,4 ∈ R. The matrices C= and C≥ contain the coefficients of the
linear equality and inequality constraints (one constraint per row), respectively.
Similarly, the matrices Ovo, Or and Os contain the coefficients of the objec-
tives of the broker, the request and the resources, respectively. The dimensions
of these matrices are 4 × nvo, 4 × nr and 4 × ns, respectively, with the ns
being the number of objectives. The 1×nvo/r/s vectors oω

vo, oω
r and oω

s contain
the weights of these objectives, with nvo/r/s being the number of objectives
of the corresponding party. Using the weighted sum as objective criteria, the
co-reservation problem can be modeled as follows.

Global Optimization for Scheduling Multiple Co-Reservations in the Grid 97

min Or

⎛
⎜⎜⎝

t
q
d
1

⎞
⎟⎟⎠ or + Os

⎛
⎜⎜⎝

t
q
d
1

⎞
⎟⎟⎠ os + Ovo

⎛
⎜⎜⎝

t
q
d
1

⎞
⎟⎟⎠ ovo

subject to (1)

C=

⎛
⎜⎜⎝

t
q
d
1

⎞
⎟⎟⎠ = 0 ∧ C≥

⎛
⎜⎜⎝

t
q
d
1

⎞
⎟⎟⎠ ≥ 0

Note, the constant components in the objective – the “1” in the vectors –
are not required. However, they were left in for illustrative purposes, i.e., to
show the similarity between the objectives and the constraints. Furthermore,
they will be replaced by other constructs in the following models. Due to the
limitation to a single request no temporal and spatial relationships need to be
modeled.

Removing model restrictions. The presented model has two limitations –
the used functions are linear and only a single resource is modeled. We briefly
introduce piecewise linear functions as a means to model non-linear functions.
Thereafter, we describe two means for modeling multiple resources. In the
remainder of the paper, we will implement the latter of these means.

While some properties such as the availability of a resource or the available
budget depending on the finish time could be roughly approximated by a linear
function, others may not so. For example, the costs for reserving network
bandwidth may follow a periodic function (day/night or working day/weekend).
Another example is given by the execution time of a parallel program, which
may be modeled by a non-linear function derived from Amdahl’s law.

This problem may be circumvented by approximating the actual functions
with piecewise linear functions (PLF). PLFs over a single domain are often
modeled by special ordered sets of type 2 (SOS2). In our scenarios, however,
the properties are defined over three domains (start time, service level and
duration). Hence, we would need special ordered sets of type 4. Alternatively,
the problem can be partitioned such that all properties are linear over a single
partition. However, the full exploitation of PLFs is beyond the scope of this
paper.

For extending model 1 to the class SAR, we need to model multiple resources.
The canonical means for supporting multiple resources are:

• constructing an instance of model 1 for each resource, solve all instances
individually and select the resource with minimal objective as solution,
or

98 COREGRID SYMPOSIUM

• developing an integrated model which uses, for each resource, one binary
variable, one time variable, one service level variable and one duration
variable.

We will focus on the latter possibility, since the essential part of the former
was already defined by model 1.

Mixed integer linear programming. Let K := |S| denote the number of
resources. We model the class SAR by associating four variables xk ∈ {0, 1},
tk ∈ T , qk ∈ Q and dk ∈ D with each resource sk ∈ S. The values of
the solution variables s, t, q and d are derived as follows s =

∑K
k=1 k xk,

t =
∑K

k=1 tk xk, q =
∑K

k=1 qk xk. and d =
∑K

k=1 dk xk.
We rewrite the linear model 1 by modeling multiple resources and modifying

the constraints and objectives such that only those of the selected resource are
taken into account. The new constraints are as follows

∀k ≤ K : C=
k

⎛
⎜⎜⎝

tk
qk

dk

xk

⎞
⎟⎟⎠ = 0 ∧ ∀k ≤ K : C≥

k

⎛
⎜⎜⎝

tk
qk

dk

xk

⎞
⎟⎟⎠ ≥ 0 , (2)

where C=
k and C≥

k contain all constraints on the assignment of the request to
resource sk. The variables of the start times, the service levels and durations
are bounded by their domains T , Q and D, respectively. We assume that corre-
sponding constraints are already included in C= and C≥. Thus, the following
constraint ensures that only a single tuple 〈xk, tk, qk, dk〉 is set to non-zero
values.

K∑
k=1

xk ≤ 1 (3)

The objectives (cf. equation 1) are adapted in a similar fashion by adding
indices to the variables, replacing the ‘1’ in the vectors by xk and building the
sum over all resources. Thus, the new objective looks as follows

min
K∑

k=1

⎛
⎜⎜⎝Ok

r

⎛
⎜⎜⎝

tk
qk

dk

xk

⎞
⎟⎟⎠ or + Ok

s

⎛
⎜⎜⎝

tk
qk

dk

xk

⎞
⎟⎟⎠ os + Ok

vo

⎛
⎜⎜⎝

tk
qk

dk

xk

⎞
⎟⎟⎠ ovo

⎞
⎟⎟⎠ .

(4)

3.2 Multiple Atomic Requests

We adapt the model of the class SAR to support multiple atomic requests.
The main difference between the classes SAR and MAR is that MAR requires

Global Optimization for Scheduling Multiple Co-Reservations in the Grid 99

to model multiple requests. Thus, we need to parametrize the variables, the
coefficient matrices, the constraints and the objectives with the resource and
the request. That is, we model any possible assignment of a request rl to a
resource sk by a tuple 〈tl,k, ql,k, dl,k, xl,k〉. A variable xl,k is set to one iff the
request rl is assigned to the resource sk. In that case, the variables tl,k, ql,k and
dl,k may be set to non-zero values. Let L denote the number of requests. We
replace the single constraint 3 by the following set of constraints

∀l ≤ L :
K∑

k=1

xl,k ≤ 1 (5)

The set of constraints 5 ensures that each request is assigned to at most one
resource. The constraints in 2 are changed to

∀l ≤ L : ∀k ≤ K : C=
l,k

⎛
⎜⎜⎝

tl,k
ql,k

dl,k

xl,k

⎞
⎟⎟⎠ = 0

∧ ∀l ≤ L : ∀k ≤ K : C≥
l,k

⎛
⎜⎜⎝

tl,k
ql,k

dl,k

xl,k

⎞
⎟⎟⎠ ≥ 0 ,

where C=
l,k and C≥

l,k contain all constraints on the assignment of the request rl

to resource sk. The objective function in equation 4 is replaced by

min
L∑

l=1

K∑
k=1

⎛
⎜⎜⎝Ol,k

r

⎛
⎜⎜⎝

tl,k
ql,k

dl,k

xl,k

⎞
⎟⎟⎠ or +

Ol,k
s

⎛
⎜⎜⎝

tl,k
ql,k

dl,k

xl,k

⎞
⎟⎟⎠ os + Ol,k

vo

⎛
⎜⎜⎝

tl,k
ql,k

dl,k

xl,k

⎞
⎟⎟⎠ ovo

⎞
⎟⎟⎠ .

3.3 Multiple Co-Reservation Requests

Compared to the class MAR, we need to model temporal and spatial rela-
tionships between any two requests – more precisely between two assignments
of a request to a resource. Particularly, we will extend the model MAR by two
new types of constraints. The existing model for the class MAR is not changed.

100 COREGRID SYMPOSIUM

Temporal relationships. Temporal relationships can use the start time, the
end time, any offset to them or the duration. For example, the requirement
that the requests r1 and r2 shall start at the same time can be formulated as
the constraint t1 − t2 = 0. Since, a time variable ti models the start time
of a request, we need to add the request’s duration to model its end time.
For example, the requirement that request r1 shall precede request r3 can be
formulated as the constraint t3 − (t1 + d1) ≥ 0. We implement temporal
relationships by fully exploiting the multi-dimensional definition of constraints,
i.e., cf : (R × S × T × Q × D)L −→ R. Here, R and L denote the set of
requests and their number, respectively.

The corresponding coefficient matrices TC=,≥ contain 4L columns, where
the elements tcz,4(l−1)+1 , . . . , tcz,4l contain the coefficients of request l ∈ [1, L]
of the temporal relationshipz. For example, the ‘precede’ condition of the above
problem with three requests would be written as the row vector

(−1 , 0 , −1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0) .

Let Y denote the vector(
K∑

k=1

t1,k,
K∑

k=1

q1,k,
K∑

k=1

d1,k,
K∑

k=1

x1,k, . . . ,
K∑

k=1

tL,k,
K∑

k=1

qL,k,
K∑

k=1

dL,k,
K∑

k=1

xL,k

)
,

which contains the aggregated values of the variables for each request. The
temporal relationships can be formulated as

TC= · Y T = 0 ∧ TC≥ · Y T ≥ 0 .

Spatial relationships. Spatial relationships are used to co-locate two requests
at the same site – e.g., input data with the compute part – and to ensure connec-
tivity for a network request and the participants on both ends. We introduce a
generic model, which applies to both types of spatial relationships. We use two
vectors left and right and the matrix coloc for supporting spatial relationships.
The vectors contain information about the left and the right ‘end’ (or location)
of a resource. These differ for network resources, but are the same for other
resources. The matrix coloc contains one row for each spatial relationship.

The vectors LEFT := (left1, . . . , leftK) and RIGHT := (right1, . . . , rightK)
define the left and right location of all resources sk. Each row in coloc contains
2L elements. The elements 2l− 1 and 2l represent the left and the right end of
the request l. If the left/right side of request v shall be co-located with the left-
/right side of request w, the corresponding elements of request v and request w
are set to 1 and -1, respectively. Let Z define the vector of the locations of the
resources assigned to all requests, i.e.,(

K∑
k=1

x1,kleftk ,
K∑

k=1

x1,krightk , . . . ,
K∑

k=1

xL,kleftk ,
K∑

k=1

xL,krightk

)
.

Global Optimization for Scheduling Multiple Co-Reservations in the Grid 101

Table 1: Parameters of the experiments for the classes MAR and MCR.

values for the class

parameter MAR MCR

application sce-
nario

independent tasks S1, S2, S3, S4, S5, S6, S7,
S8

no. of requests 1, 2, 3, 4, 5, 10, 20, 30, 40,
50, 100

1, 2, 3

no. of resources 1, 2, 3, 4, 5, 10, 20, 30, 40,
50, 100

1, 2, 3

no. of constraints 6, 9, 12 6, 9, 12
no. of objectives 1, 2 1, 2
no. of runs 10 3

The spatial relationships can be formulated as the constraint

coloc · ZT = 	0T ,

where 	0 contains as many elements as spatial relationships are defined.

4. Experimental Evaluation

Many optimization problems, in particular integer problems, suffer from a
large search space. We performed 9,556 experiments using CPLEX 10.1 to
study which instances are solvable in a reasonable time and which parameters
influence the solving time most. In the experiments, we varied the number
of requests, the number of resources, the number of the constraints per entity
(requests and resources) and the structure of the requests. Because we generated
random numbers for the coefficients, we repeated each experiment up to 10
times.

The experiment parameters for the classes MAR and MCR are shown in
Table 1. Because, the experiments for the class MCR required much longer
solving times we had to shrink the number of requests and resources signifi-
cantly. The application scenarios S1-S8 are depicted in Fig. 3. Because of the
limited space, we can only present results for a few datasets for each class. The
experiments were carried out on a SUN Galaxy 4600 16 core system with 64
Gbytes of RAM. The solution times ranges from a few milliseconds to several
hours.

102 COREGRID SYMPOSIUM

Figure 3: Application scenarios S1 to S8 used in the experimental evaluation of the class MCR.
Solid red lines indicate spatial relationships. Temporal relationships are shown by dashed blue
lines plus a comparison operator. The type of a requested resource is given by the first letter of
the tag in a box – C for compute, D for data, N for network and L for license.

4.1 Results for Multiple Atomic Requests (Class MAR)

Figures 4a and 4b show the times needed for scheduling1 to100 requests to 10
and 100 resources, respectively. We use a logarithmic scale for the vertical axis
(solution time) and partially logarithmic scale for the horizontal axis (number
of requests) to optimize the presentation of the data. For each number of
requests, we plotted three error bars (6, 9 and 12 constraints per party, i.e.,
request/resource). An error bar indicates the average (‘center’), the minimum
and the maximum measured solving time for 10 runs.

The graphs show several important information. First, the more requests are
to be scheduled the more time the solver needs to find the optimal solution.
However, the time increases nearly linearly with the number of requests. The
solving time for the experiments with 100 resources is approximately one order
of magnitude larger than for the experiments with 10 resources. This is not
surprising, since the problem sizes (number of resources) also differ by one
order of magnitude. More notable are the different increases of the solving
time for the transitions from 6 to 9 and from 9 to 12 constraints. This behavior
is caused by the different nature of the constraints. In each experiment, six
constraints are used to bound the variables of the problem – two for each of the
start time t, the service level q and the duration d. The remaining constraints
are derived randomly and resemble linear combinations of the three variables.
In summary, we see that mixed integer linear programming is well applicable
to smaller Grid environments (requiring not more than one second for up to
50 requests). It is still applicable in larger environments, but achieving fast
response times for scheduling decisions may require to limit either the number
of constraints or the number of requests.

Global Optimization for Scheduling Multiple Co-Reservations in the Grid 103

(a) 10 eligible resources

Figure 4: Solving time vs. the number of requests for different numbers of eligible resources
per request. Each error bar shows the average, minimum and maximum times measured for 10
runs. The lines connect the average values of experiments differing in the number of requests
only.

4.2 Results for Multiple Co-Reservation Requests (Class
MCR)

Figures 5a and 5b show the times needed for scheduling requests of different
application scenarios requiring two to six non-network resources and none to
three network resources. The number of eligible non-network resources per
request is one and three in Fig. 5a and Fig. 5b, respectively. We use a logarithmic
scale for the vertical axis (solution time). The scenarios are ordered such that
their complexity increases along the horizontal axis. For each scenario we
plotted four error bars, each one corresponding to a combination of the number
of requests and the number of constraints.

104 COREGRID SYMPOSIUM

Although, the experiments involved only a few number of requests and re-
sources, we observed large solving times. The solving time increases expo-
nentially, except for co-reservation requests requiring only two resources, i.e.,
for scenario S1 (cf. Fig. 3). Studying the graphs in more detail, we find that
the problem instances with a single eligible resource per atomic request (all
instances in Fig. 5a) are solvable in reasonable time. The problem instances
with three eligible resources per atomic request, generally, require more time
for finding an optimal solution. Most of the smaller instances (S1 to S4) and
instances with a single request are solved in reasonable time, i.e., in less than
30 seconds. However, the slightly more complex scenarios require significantly
more time. We also considered even more complex scenarios involving multi-
ple steps of a workflow. These were solved efficiently in case of a single eligible
resource per atomic request, but often required several hours solving time when
the number of resources was increased.

Thus, we can devise the following recommendations for using a mixed integer
linear programming model to schedule co-reservations. First, for each atomic
request only a single eligible resource should be considered. This requires a
very efficient filtering in the matchmaking (cf. step (2) in Fig. 2). Second,
the number of constraints should be kept small. Last, requests for complex
applications requiring multiple resources should be scheduled individually.

5. Related Work

Previous work provides means either for individual steps of the processing
of requests (cf. Section 2) or implements a very specific application scenario.
In contrast, we aim at a more generic approach which supports a wide variety of
scenarios in terms of the structure of the applications, the types of the reservable
resources and the means to specify constraints and objectives.

Resource discovery for the immediate execution of rigid (non-moldable)
requests using static and current status information about the resources are
implemented by Condor ClassAds [9]and many todays Grid resource brokers
such as GridWay [5]and the EGEE Workload Management System [3]. Liu and
Foster [7]applied constraint satisfaction techniques to extend Condor ClassAds.
Naik et al. [8]developed an integer programming model for resource discovery.

Mechanisms for advance reservations require the prediction of the future
state of resources (steps (3) and (4)). In [6], several techniques are explored for
predicting the runtimes of applications and deriving the queuing time of a new
compute job. In contrast, our mechanisms [10–11]for deriving the future state
of resources not only provide a single value for a new job, but rather a set of
probes over the range of start times and service levels. Each probe may contain
multiple metrics used in the selection of co-reservations.

Global Optimization for Scheduling Multiple Co-Reservations in the Grid 105

(a) One eligible resource

Figure 5: Solving time vs. the scenario and the number of requests for different numbers of
eligible resources per request. The error bars show the average, minimum and maximum times
measured for 3 runs. The lines connect the average values of experiments differing in the scenario
only.

In [13], Wieczorek et al. present a taxonomy of the multi-criteria Grid
workflow scheduling problem. However, none of the analyzed approaches sup-
ports all capabilities our generic model provides, i.e., multiple criteria, multiple
workflows, advance reservation, moldable tasks and different types of requests
(compute, network, storage, etc.).

The VIOLA meta-scheduler [12]schedules compute jobs to multiple re-
sources by incrementally increasing the advance booking period until all jobs
may be allocated. That is, it only supports one criteria – the earliest completion
time.

Brandic et al. [1]propose a workflow engine which supports quality of ser-
vice for web services. First, for each workflow activity, it contacts candidate
services (cf. eligible resources in our model) and negotiates a single service

106 COREGRID SYMPOSIUM

level acknowledging the desired characteristics such as maximum execution
time and maximum price. Second, it assigns each activity to a candidate ser-
vice such that the utility function is maximized. The utility function is the
weighted sum of the objectives of each activity and the overall workflow. The
major differences to our approach are the single negotiated service level, the
missing support for constraints and objectives of both the resources and the
broker and the lack of temporal and spatial relationships among the activities.

In [14], Zeng et al. present a middleware for selecting web service instances
to compose complex workflows. In particular, they propose a QoS model for
atomic web services and for composite services. Based on this model, the mid-
dleware implements a QoS-aware selection of web services such that the user’s
satisfaction is maximized. The user’s satisfaction is defined as the weighted
sum of multiple criteria chosen by the user itself. The actual selection of the
web services is implemented using integer programming. Besides constraints
on each individual workflow activity, their implementation supports global con-
straints on the aggregated values of individual activities. For example, the total
budget for executing a workflow or its total execution time may be limited.
A side effect of constraining the execution time is the creation of a schedule,
that is, a solution assigns a start time to each activity. In contrast, our model
explicitly considers the start time as a variable. Additionally, our model sup-
ports moldable service levels and durations to optimize the user’s satisfaction.
Also, the resources (or web services) and the broker may specify constraints and
objectives for each workflow activity. Moreover, our model provides rich ca-
pabilities for specifying temporal and spatial relationships and allows to define
global constraints and objectives explicitly. In [2], Canfora et al. apply genetic
algorithms to optimize the assignment of workflow activities to candidate ser-
vices. Their approach supports user defined constraints and objectives for each
activity. The objective of the whole workflow is constructed by aggregating
the objectives of the individual activities. Canfora et al. describe different
aggregation functions depending on the type of the objective (e.g., cost, time,
availability, etc.) and the structural relationships among the activities (e.g., se-
quence, switch, loop, etc.). In our model, we only support the weighted sum as
aggregation function. Moreover, we do not need to distinguish between differ-
ent control flow elements of a workflow, since we assume that all activities must
be executed. Because we use mixed integer linear programming, all constraints
and objectives must be linear functions. In contrast, the use of genetic algo-
rithms allows to use arbitrary functions. The major difference to our work is
the single variable per activity. Our model supports flexible start times, service
levels and durations. Of course, that flexibility comes at a high cost, namely,
the size of the search space.

Table 2 summarizes the approaches and compares them against our model.

Global Optimization for Scheduling Multiple Co-Reservations in the Grid 107
Ta

bl
e

2:
C

om
pa

ri
so

n
of

ex
is

ti
ng

ap
pr

oa
ch

es
to

sc
he

du
le

m
ul

ti
pl

e
re

se
rv

at
io

ns
in

ad
va

nc
e

an
d

to
m

an
ag

e
w

or
kfl

ow
s.

S
ym

bo
ls

:
ty

pe
s

of
en

ti
ti

es
(c

-
co

m
pu

te
,

n
-

ne
tw

or
k,

d
-

da
ta

,
l

-
li

ce
ns

e,
w

s
-

w
eb

se
rv

ic
es

),
va

ri
ab

le
s

pe
r

as
si

gn
m

en
t

(s
-

re
so

ur
ce

,
t

-
st

ar
t

ti
m

e,
q

-
se

rv
ic

e
le

ve
l,

d
-

du
ra

ti
on

),
co

ns
tr

ai
nt

s/
C

O
N

(u
pp

er
le

ft
{n

o.
}:

S
-s

in
gl

e,
M

-m
ul

tip
le

;
up

pe
r

ri
gh

t
{p

ro
pe

rt
ie

s}
:

va
ri

ab
le

s
t,

q,
d

,
A

-a
ny

;
lo

w
er

le
ft
{m

et
ho

d
of

sp
ec

ifi
ca

ti
on
}:

I-
im

pl
ic

tl
y,

E
-e

xp
li

ci
tl

y;
lo

w
er

ri
gh

t{
fu

nc
ti

on
s

/c
om

pa
ri

so
n}

:
C

-c
on

st
an

t,
L

-l
in

ea
r,

A
-a

rb
it

ra
ry

/=
-e

qu
al

it
y,
≥-

in
eq

ua
li

ty
)

ob
je

ct
iv

es
/O

B
J

(u
pp

er
le

ft
:

cf
.

C
O

N
;u

pp
er

ri
gh

t:
cf

.
C

O
N

+
op

ti
m

iz
at

io
n

go
al

;l
ow

er
le

ft
:

cf
.

C
O

N
;l

ow
er

ri
gh

t{
fu

nc
ti

on
s

/a
gg

re
ga

ti
on
}:

cf
.

C
O

N
/ω

-w
ei

gh
te

d
su

m
,p

-p
ar

et
o

se
t)

,
te

m
po

ra
lr

el
at

io
ns

hi
ps

(S
T

-
sa

m
e

ti
m

e,
S

E
Q

-
se

qu
en

ce
,

O
L

-
pa

rt
ia

ll
y

ov
er

la
pp

in
g)

,
sp

at
ia

lr
el

at
io

ns
hi

ps
(n

et
-

ne
tw

or
k,

nn
t

-
no

n-
ne

tw
or

k)
,

te
ch

ni
qu

es
(G

A
-

ge
ne

ti
c

al
go

ri
th

m
s,

IP
-

in
te

ge
r

pr
og

ra
m

m
in

g,
M

IL
P

-
m

ix
ed

in
te

ge
r

li
ne

ar
pr

og
ra

m
m

in
g,

T
&

E
-

tr
ia

la
nd

er
ro

r)

ap
pr

oa
ch

no.of
co-requests

typesof
entities

variablesp.
assignment

m
od

el
in

g
of

an
at

om
ic

en
tit

y
m

od
el

in
g

of
a

co
-r

es
er

va
tio

n

applied
technique(s)

re
qu

es
t

re
so

ur
ce

br
ok

er
te

m
p.

in
t.-

re
l.

sp
at

.

in
t.-

re
l.

gl
ob

al

C
O

N

gl
ob

al

O
B

J
C

O
N

O
B

J
C

O
N

O
B

J
C

O
N

O
B

J

R
es
er
va
tio
n
ba
se
d
M
et
a-
Sc
he
du
lin
g

V
IO

L
A

[1
2]

1
an

y
t

M
t,

q
,
d

I
C
=

-
-

-
-

M
A

I
C
≥

-
-

-
-

-
-

-
-

-
-

-
-

S
T

no
-

-

-
-

S
m

in
t

E
N

L
T

&
E

W
or
kfl
ow

M
an
ag
em
en
t

V
G

E
[1

]
1

w
s

s,
t

M
A

I
C
≥

M
m

a
x

E
L

ω

M
A

I
C
=

-
-

-
-

-
-

-
-

-
-

-
-

no
no

M
A

I
C
≥

M
m

a
x

E
L

ω

IP

W
eb
Se
rv
ic
es
C
om
po
si
tio
n

Z
en

g
et

al
.

[1
4]

1
w

s
s,

t
M

A

I
C
≥

M
A

E
C

ω

M
A

I
C
=

-
-

-
-

-
-

-
-

-
-

-
-

S
E

Q
no

M
A

I
A

≥
M

A

I
C

ω

IP

S
eC

S
E

[2
]

1
w

s
s

M
A

I
C
≥

M
m

a
x

E
C
a
n
y

M
A

I
C
=

-
-

-
-

-
-

-
-

-
-

-
-

no
no

M
A

I
A

≥
M

m
a
x

I
A

a
n
y

G
A

O
ur
A
pp
ro
ac
h

th
is

w
or

k
≥

1
an

y
s,

t,
q,

d
M

A

E
L
≥ =

M
A

E
L

ω

M
A

E
L
≥ =

M
A

E
L

ω

M
A

E
L
≥ =

M
A

E
L

ω

SE
Q

,
ST

,O
L

ne
t

nn
t

M
A

E
L
≥ =

M
A

E
L

ω

M
IL

P

108 COREGRID SYMPOSIUM

6. Conclusion

In this paper, we studied the use of global optimization for scheduling multi-
ple co-reservations in the Grid. We modeled the problem as mixed integer linear
program (MILP). In particular, it supports flexible constraints and objectives of
all involved parties – users submitting requests, providers of resources and the
broker of a virtual organization. Furthermore, our approach supports the flexi-
bility of requests in four dimensions – the resource to reserve, the start time, the
service level and the duration. Dependencies among the parts of a distributed
application are modeled by temporal and spatial relationships. We performed
an extensive experimental evaluation using the standard solver CPLEX (version
10.1). The results of the evaluation showed that independent requests may be
scheduled very efficiently. In contrast, many co-reservation requests are only
efficiently processed if the number of eligible resources is very small.

In summary, we can devise the following recommendations for using a mixed
integer linear programming model to schedule co-reservations. First, for each
atomic request only a single eligible resource should be considered. This re-
quires a very efficient filtering in the matchmaking (cf. step (2)). Second,
the number of constraints should be kept small. Last, requests for complex
applications requiring multiple resources should be scheduled individually.

Acknowledgments

This work was partially funded by the German BMBF project AstroGrid-D
(grant 01AK804C) and the EU Network of Excellence CoreGRID (contract
IST-2002-004265). The author wants to thank Mikael Högqvist and Alexander
Reinefeld for proof-reading.

References

[1] Ivona Brandic, Siegfried Benkner, Gerhard Engelbrecht, and Rainer Schmidt. Qos sup-
port for time-critical grid workflow applications. In First International Conference on
e-Science and Grid Technologies (e-Science 2005), 5-8 December 2005, Melbourne, Aus-
tralia, pages 108–115. IEEE Computer Society, 2005.

[2] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani. An
approach for qos-aware service composition based on genetic algorithms. In Genetic and
Evolutionary Computation Conference, GECCO2005, Washington DC, USA, June 25-29,
2005, pages 1069–1075. ACM, 2005.

[3] Enabling Grids for E-sciencE. http://www.eu-egee.org, March 2008.

[4] AstroGrid-D project homepage. http://www.gac-grid.org/, March 2008.

[5] Eduardo Huedo, Rubén S. Montero, and Ignacio Martı́n Llorente. The GridWay Frame-
work for Adaptive Scheduling and Execution on Grids. Scalable Computing: Practice
and Experience, 6(3):1–8, September 2005.

[6] Hui Li, D. Groep, J. Templon, and L. Wolters. Predicting job start times on clusters.
In CCGRID ’04: Proceedings of the 2004 IEEE International Symposium on Cluster

Global Optimization for Scheduling Multiple Co-Reservations in the Grid 109

Computing and the Grid, pages 301–308, Washington, DC, USA, 2004. IEEE Computer
Society.

[7] Chuang Liu and Ian Foster. A constraint language approach to grid resource selection.
Technical Report TR-2003-07, Department of Computer Science, University of Chicago,
March 2003.

[8] Vijay K. Naik, Chuang Liu, Lingyun Yang, and Jonathan Wagner. On-line resource match-
ing in a heterogeneous grid environment. In Proceedings of the IEEE International Sym-
posium on Cluster computing and Grid 2005 (CCGrid05), Cardiff, Wales, UK, volume 2,
pages 607–614, May 2005.

[9] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Distributed resource
management for high throughput computing. InProceedings of the 7th IEEE International
Symposium on High Performance Distributed Computing, Chicago, Illinois, USA, pages
140–146. IEEE Computer Society Press, July 1998.

[10] Thomas Röblitz and Krzysztof Rzadca. On the Placement of Reservations into Job Sched-
ules. In12th International Euro-ParConference 2006,Dresden,Germany, pages 198–210,
2006.

[11] Thomas Röblitz, Florian Schintke, and Alexander Reinefeld. Resource Reservations with
Fuzzy Requests. Concurrency and Computation: Practice and Experience, 18(13):1681–
1703, November 2006.

[12] Oliver Wäldrich, Philipp Wieder, and Wolfgang Ziegler. A meta-scheduling service for
co-allocating arbitrary types of resources. In Proceedings of the 6th International Con-
ference on Parallel Processing (PPAM 2005), Poznan, Poland, volume 1, pages 782–791,
September 2005.

[13] Marek Wieczorek, Radu Prodan, and Andreas Hoheisel. Taxonomies of the multi-criteria
grid workflow scheduling problem. Technical Report TR-0106, Institute on Resource
Management and Scheduling, CoreGRID - Network of Excellence, August 2007.

[14] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. Qos-aware middleware for web services composition.
IEEE Transactions on Software Engineering, 30(5):311–327, 2004.

LOAD INFORMATION SHARING POLICIES IN
COMMUNICATION-INTENSIVE
PARALLEL APPLICATIONS

Javier Bustos Jimenez
Escuela de Ingenieria Informatica. Universidad Diego Portales
Av. Ejercito 441, Santiago, Chile.

javier.bustos@inf.udp.cl

Denis Caromel, Mario Leyton
INRIA Sophia-Antipolis, CNRS-I3S, UNSA.
2004, Route des Lucioles, BP 93,
F-06902 Sophia-Antipolis Cedex, France.

Denis.Caromel@sophia.inria.fr, Mario.Leyton@sophia.inria.fr

Jose Miguel Piquer
Departamento de Ciencias de la Computacion (DCC). Universidad de Chile.
Blanco Encalada 2120, Santiago, Chile.

jpiquer@dcc.uchile.cl

Abstract One usage of Grid infrastructures is to perform parallel computing of scien-
tific applications, most of the time related to hard sciences (physics, chemistry,
biology). To exploit parallelism most of these applications are intensive commu-
nicated in data and synchronisation messages. On this context, grid systems have
to take in account to not interfering with the normal execution of applications.
Starting from this idea, in this article we present a study of information sharing
policies used by load-balancing algorithms developed for the middleware ProAc-
tive, analyzing the performance scalability of: response time (time of reaction
against instabilities) and bandwidth, from a communication-intensive applica-
tion context. We divided the policies into: Centralized or Distributed oriented;
and Eager or Lazy load information sharing. Our experimental results show that
Eager Distributed oriented policies have better performance (response time and
bandwidth usage).

Keywords: Dynamic load balancing, Communication-intensive parallel applications, Load
information sharing policies, Load information collection.

112 COREGRID SYMPOSIUM

1. Introduction

Load-balancing is the process of distributing parallel application tasks on a
set of processors while improving the performance and reducing the application
response time. The decisions of when, where and which tasks have to be trans-
ferred are critical, and therefore the load information has to be accurate and
up to date [9]. In dynamic load-balance, decisions depend on the information
collected from the system. Load information can be shared among processors
periodically or “on demand”, using Centralized orDistributed information col-
lectors [12]. When dealing with communication-intensive applications (parallel
applications which transfer a large amount of data among processors), the infor-
mation sharing policy influences not only the load-balancing decisions but also
the communication itself. We studied this problem, because our results can be
applied to optimise performance load-balancing algorithms for the middleware
ProActive[2].

The performance of load-balancing algorithms for non-intensive communi-
cation applications has been studied in depth since the last years of the 80’s [3,
11, 12] focusing on stability (ability of balancing the work only if that action
improves the performance of the system) and response time (ability of reacting
against instabilities). Casavant and Kuhl [3] show that a faster response-time is
more important than stability for improving the performance of load-balancing
algorithms.

This article describes experiments which measure the response time and
bandwidth usage for different information sharing policies applied by well-
known load-balancing algorithms. These policies are studied in a commu-
nication-intensive context and are defined as follows:

1 Centralized Full Information: Nodes share all their load information
with a central server. Figure 1.a presents an example with three nodes:
nodes A and C send their load information L to the server B periodically.
The server collects that information and keeps the system balanced (in
the figure, ordering A to balance with C). This policy is widely used on
systems like Condor [6, 8] and middlewares like Legion [4]. Theoretical
and practical studies report this policy as non scalable [3, 12].

2 Centralized Partial Information There is partial information sharing
among the nodes through central server. Figure 1.b presents an example
using three nodes which share information only when they are over-
loaded. A node A registers on the server B when it enters an “overloaded
state” (that is, the "load metric" is above a given threshold), and node
C unregisters from the server because it exits the "overloaded state". At
the same time C asks the server for overloaded nodes, the server chooses
one node from its registration table and starts the load-balancing between
them.

a

A B C

t

L
L

C

b

A B C

t

R

A

U/?

c

A B C

t

L

L L

S
S

d

A B C

t
O O

S
S

Figure 1: a) Centralized Full Info. b) Centralized Partial Info. c) Distributed Full Info. d)
Distributed Partial Info.

3 Distributed Full Information Nodes share all their information using
broadcast. Figure 1.c shows an example using three nodes: Each node
broadcasts its load to the others periodically. The nodes use the informa-
tion for load balancing [10]. Then, A and C realize they can share B’s load
and send the balance message S. The figure also shows the main problem
of this policy: there is no control on the number of balance messages an
overloaded node might receive. For our response time measurements,
we considered only the first balance message (in the figure: the message
from A).

4 Distributed Partial Information There is partial information sharing
among the nodes using broadcast. Figure 1.d presents an example for the
overloaded case noting that, unlike in the previous policy, only the reply
from A is considered.

We studied the policies at the load balancing module of the middleware
ProActive [2]. ProActive provides a strong deployment infrastructure, com-
munication and active-object migration [5]. Using active-objects, communi-
cation-intensive parallel applications such as Jem3D [7] have been developed.

This article is organized as follows: Section 2 presents the load models and
the policies simulated with ProActive. Section 3 summarizes the main results
of this study. Section 4 shows the conclusions and discusses future work.

2. Model Overview and Definitions

This section provides the main definitions and a brief overview of the load-
balancing algorithms and information sharing policies used in our analysis.

In this paper, each node represents a machine (virtual or real) which partici-
pates in the balancing. As in [12], we compare centralized and distributed algo-
rithms, adding partial-information algorithms in our experiments. In ProActive,
there is no notion of tasks like in parallel batch systems [8, 13]. We use the
word task to refer to a service [2], and the word job for a set of services served
by an active object. In the literature, the word load represents a metric such as
the CPU queue length, the available memory, a linear combination of both, etc.
In this paper, load represents the number of tasks in the CPU queue modelled

113Load Information SharingPolicies inCommunication-IntensiveParallel Applications

114 COREGRID SYMPOSIUM

with ProActive (see section 2.2). In our study, response time is the time since
a node entering the overloaded state and the beginning of the load-balancing.

2.1 Load Model

Following the recommendations of [1, 3], we simulate the load of each node
with a discrete-time population process with birth-rate λ and death-rate μ. The
value of λ represents the number of jobs which arrive every second to a node.
The job size (in terms of number of tasks) follows an exponential distribution
with mean 1. The death-rate μ represents the number of tasks served by a single
node per second. In our experiments we use λ = 1, 2, ..., 10, and in order to
maintain the system stable: μ = 10. Note that this methodology simulates the
load balance process and its communications. Simulation data will conclude
whether the policies hinder intensive-communicated parallel applications. Our
experiments have to be comparable for all policies and number of nodes. There-
fore, we calculated the total number of incoming tasks every second (along a
period of 60 seconds) for each value of λ. These precomputed values were used
for all the experiments.

In our experiments, the nodes are labelled 0, ..., n and the value of λ assigned
to the node i is λi = 1 + i mod 10. Each node used the initial precomputed
incoming rate λi, and after 60 seconds, the simulation was restarted again with
the value of λi.

Several studies have shown that on a set of workstations (without load bal-
ancing), more than 80% of the workstations are idle during the day [8, 12]. The
concept of occupiedworkstations and overloaded nodes are similar: processors
which want to share work. Therefore, in our study, if no load balance was made,
20% of the nodes had to reach the overloaded state. To achieve this with the
previously calculated values for λ, we used the convention: Underloaded Node
means load < 10, Normal Node means 10 ≤ load < 15, and Overloaded Node
means load ≥ 15.

2.2 Implementing the Information Sharing Policies

Since the information-sharing policies defined in section 1 can be full or
partial, when unspecified we will be referring to full information sharing poli-
cies. In full information sharing policies, load information from overloaded
and underloaded nodes is shared.

On the other hand, we will classify partial information policies into two
groups: eager or lazy. Eager policies correspond to the ones where an over-
loaded node triggers the load-balancing, and therefore the partially shared in-
formation corresponds to the underloaded nodes. Lazy policies correspond to
the ones where the underloaded node triggers the load-balancing, and therefore
the partially shared information corresponds to the overloaded nodes.

115

Each node is modelled as an active object with three principal operations:

• register: registers on the communication channel (server, broadcast).
This method starts the clock in our experiments.

• loadBalance: starts the load-balancing process, to stop the clock in our
experiments, and to calculate the response time.

• addLoad(x): adds x tasks to the callee.

Centralized
For this policy, one active object was chosen as a central server which col-

lected and stored load-balance information of each node as: underloaded, nor-
mal or overloaded. The policy works as follows:

• Every second, the nodes call the remote register execution on the
server. The load server processes incoming method calls. If the call
originates from an overloaded node, the server randomly chooses an ad-
dress of an underloaded node (if any) and calls the method loadBalance
on the overloaded node with the chosen address.

• The overloaded node performs locally addLoad(-myLoad/2) (accord-
ing to the recommendations of Berenbrink, Friedetzkyand Goldberg [1])
and the underloaded node (remotely) performs the execution of
addLoad(myLoad/2).

Lazy Centralized
We studied this policy looking for a reduction of the information transmitted

over the network. For this, we included an unregister method to the node
model. This policy is described as follows:

• When a node reaches the overloaded state, it registers on the central server,
and when a node leaves the overloaded state, it unregisters (removes its
reference) from the server.

• Every second, if a node is underloaded it asks the server for overloaded
nodes. When the server receives that query, it randomly chooses the
address of an overloaded node (if any), and starts the load-balancing:
ordering the overloaded node to balance with the node that originated the
query.

Eager Centralized
This policy is similar to the previous one, but underloaded nodes share their

information instead of overloaded ones. The nodes register on the server when
they reach the underloaded state and unregister when leaving it:

• When a node is in overloaded state, it asks the server for underloaded
nodes once per second.

Load Information SharingPolicies inCommunication-IntensiveParallel Applications

116 COREGRID SYMPOSIUM

• Upon receiving the query, the server randomly chooses the address of
an underloaded node (if any) and begins the load-balancing by order-
ing the overloaded node that sent the query to balance with the chosen
underloaded node.

Distributed
The policy is similar to Centralized, but instead of sending the information

to a central server, nodes broadcast their information.
Lazy Distributed
This policy is similar to Lazy Centralized, but in this case the information is

shared through the multicast channel instead of a central server. We expected
this policy to have similar time delay but use less bandwidth than theDistributed
policy due to the reduction in the number of sent messages.

Eager Distributed
This policy is the broadcast version of Eager Centralized, and we expected

a behavior similar to the Lazy Distributed policy.

2.3 Hardware and Software

We tested the policies on a heterogeneous network composed of: 3 Pentium
II 0.4 GHz, 10 Pentium III 0.5 - 1.0 Ghz, 3 Pentium IV 3.4GHz and 4 Pentium
XEON 2.0GHz for the nodes and a Pentium IV 3.4GHz for the server. We
uniformly at random distribute the nodes (active objects) on the processors.
For response time measurements we used the system clock, and for bandwidth
measurements we used Ethereal software. The policy methods for nodes and
servers were developed using the ProActive middleware on Java 2 Platform
(Standard Edition) version 1.4.2.

3. Results Analysis

We tested the policies on 20, 40, 80, 160, 320 nodes distributed on 20 ma-
chines. For each case we took 1000 samples of response times and the band-
width reports from Ethereal. In this section we present the main results of this
study. We will first discuss the response-time, and then the bandwidth analysis.

3.1 Response Time

Figure 2 shows response-time for all the policies. Following the recommen-
dations of [9], response time should be less than the periodical update time, and
in this study the update time was 1000 ms.

Using this reference, Distributed policies presented better response times
than Centralized policies. Also, policies that sent underloaded information
(Eager policies) had better performance than policies which shared overloaded
information (Lazy policies). This happens because in the Eager policies, over-

117

loaded nodes generate the load balancing request, while in Lazy policies over-
loaded nodes have to wait until an underloaded node contacts them.

Note that for the Eager Distributed policy, overloaded nodes obtain the in-
formation of underloaded ones before the balance process. Therefore, since
the response time is near to zero, we decided not to show this algorithm in the
figure. Also note that, the poor scalability of the Lazy Centralized policy, can
be explained because the server is monothreaded. Using a multithreaded cen-
tral server can increase the saturation threshold, but it is not scalable solution
because new constraints like bandwith usage or mutual exclusion are generated.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 50 100 150 200 250 300 350

R
es

po
ns

e
T

im
e

[m
se

c]

Number of Nodes

Distributed
Lazy Distributed

Centralized
Lazy Centralized

Eager Centralized

Figure 2: Mean response time for all policies

3.2 Bandwidth

In this section we tested the policies bandwidth usage. Unfortunately, the
underlying implementations introduces an additional difference: TCP or UDP
based communications (resp. Centralized and Distributed policies). To avoid
having to interpret such bias, we compare performance between full and partial
information policies, developed on centralized and distributed load-balancing
algorithms.

Figure 3 shows the bandwidth used during the information sharing phase,
counting only messages sent to the server:

Load Information SharingPolicies inCommunication-IntensiveParallel Applications

118 COREGRID SYMPOSIUM

1 Centralized policies use between 5 (Eager Centralized) and 40 times
(Centralized) more bandwidth than distributed policies.

2 For partial information schemes with centralized policies: when over-
loaded nodes share their information, less than 20% of the total nodes
(see section 2.1) will send register/unregister messages, and more than
80% of them will send queries for registered nodes (every second).

3 When underloaded nodes share their information, more than 80% of the
total nodes will send register/unregister messages and less than 20% of
them will send queries. This behavior causes the former approach to
consume more bandwidth than the latter.

Figure 4 shows the total bandwidth used by our load model, including the
loadBalance and addLoad messages:

1 Eager policies which share partial information of underloaded nodes
have the lowest bandwidth usage for each case (Centralized and Dis-
tributed).

2 Lazy policies which share partial information of overloaded nodes gen-
erate a great increase of the bandwidth usage, because there is no control
on how many underloaded nodes send loadBalance messages. In the
Lazy Centralized policy, this behavior generates a saturation on the com-
munication channel even though the number of messages is half of that
of the Centralized policy. This happens because most of the messages
are balance queries, and the server has to choose an overloaded node and
send the loadBalance message to it.

3 When the service queue of a central server becomes saturated (over 300
nodes on our experiments), the response time increases and the bandwidth
usage decreases, because the saturation will causes less messages to be
sent over the network. As noted for the response time analysis (see 3.1),
using a multithreaded central server it is not a scalable solution.

3.3 Testing a real application

We tested the impact of the policies with a real application: the calculus of
a Jacobi matrix. This algorithm performs an iterative computation on a real-
valued square matrix. On each iteration, the value of each element is computed
using its own value and the value of its neighbors on the previous iteration. We
divided a 3600x3600 matrix into 25 disjoint sub-matrices of equal size, each one
managed by an active object called “worker” (implemented using ProActive).
Each worker communicates only with its direct neighbors.

119

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300 350

B
an

dw
id

th
 [B

yt
es

/s
ec

]

Number of Nodes

Distributed
Lazy Distributed

Eager Distributed
Centralised

Lazy Centralised
Eager Centralised

Figure 3: Bandwidth usage of coordination policies: Information sharing phase.

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300 350

B
an

dw
id

th
 [B

yt
es

/s
ec

]

Number of Nodes

Distributed
Lazy Distributed

Eager Distributed
Centralised

Lazy Centralised
Eager Centralised

Figure 4: Bandwidth usage of coordination policies: Total.

Load Information SharingPolicies inCommunication-IntensiveParallel Applications

120 COREGRID SYMPOSIUM

As a reference, all the workers are randomly distributed among 15 machines,
using at most two workers by machine. Using this distribution, we measured the
mean execution time of performing 1000 sequential calculi of Jacobi matrices
(first row of Table 1).

To determine the impact of the policies on the Jacobi application, we dis-
tributed 30 nodes among the 15 machines. We ran the application (placing one
load server outside of the simulation machines), and measured the execution
time of Jacobi. Separately for each policy we measured the CPU cost (in % of
busy time) for the 15 machines. The results are in Table 1.

Table 1: Policy effects on execution time of a parallel Jacobi application
Policy Execution Time (sec) % policy cost (time) % policy cost (CPU)

None 914.361 — —

Centralized 1014.960 11.00% 1.3%

Lazy Centralized 995.873 8.91% 1.1%

Eager Centralized 972.621 6.37% 1.1%

Distributed 1004.800 9.89% 10.7%

Lazy Distributed 925.964 1.26% 4.5%

Eager Distributed 915.085 0.08% 4.1%

While Centralized policies use less CPU on the “client” side, they use more
bandwidth than their distributed equivalents. A special case is the Distributed
policy, which uses less bandwidth than the Centralized policies, but the largest
CPU time consumption, and it produces almost 10% of time delay on the ap-
plication. So, if this policy is used, the load balancing itself will produce
overloading.

4. Conclusions and Future Work

In this study we presented a comparison between six communication policies
for load-balancing algorithms developed into the middleware ProActive. We
focused on two metrics: communication bandwidth usage and response time.

We conclude that Distributed oriented policies have the best performance
using these metrics, and the best information-sharing protocol is to share infor-
mation only from underloaded nodes (Eager). Therefore, for a load-balancing
architecture for communication-intensive parallel applications developed with
asynchronous communicated middlewares such as ProActive, we suggest us-
ing an Eager Distributed policy where overloaded nodes trigger the balancing
using previously acquired information, thus avoiding the need of Centralized
servers. Moreover, if the load index could be updated with a lower frequency

than one per second and similar accuracy, the policy would use less coordination
messages, producing less interference with parallel applications.

Our future goal is to optimize the selection of the best node candidate for the
load-balancing process from a total or partial view of the network and consider-
ing different network topologies still aiming for the best performance in terms
of bandwidth usage, response time and interference with parallel applications.

Acknowledgments

This work was partially supported by NIC Labs and CoreGrid Network of
Excellence.

References
[1] Petra Berenbrink, Tom Friedetzky, and Leslie Ann Goldberg. The natural work-stealing

algorithm is stable. In IEEE Symposium on Foundations of Computer Science, pages
178–187, 2001.

[2] Javier Bustos-Jimenez, Denis Caromel, Alexandre Di Costanzo, Mario Leyton, and Jose
Piquer. Balancing active objects on a peer to peer infrastructure. In Proceedings of XXV
International Conference of SCCC, Valdivia, Chile. IEEE CS Press, November 2005.

[3] T. L. Casavant and J. G. Kuhl. Effects of response and stability on scheduling in distributed
computing systems. IEEE Trans. Softw. Eng., 14(11):1578–1588, 1988.

[4] Steve J. Chapin, Dimitrios Katramatos, John Karpovich, and Andrew S. Grimshaw. The
Legion resource management system. In Dror G. Feitelson and Larry Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, pages 162–178. Springer Verlag, 1999.

[5] Wilfired Klauser Denis Caromel and Julien Vayssiere. Towards seamless computing and
metacomputing in java. Concurrency Practice and Experience, 1998.

[6] Elisa Heymann, Miquel A. Senar, Emilio Luque, and Miron Livny. Adaptive scheduling
for master-worker applications on the computational grid. InGRID, pages 214–227, 2000.

[7] Fabrice Huet, Denis Caromel, and Henri Bal. A high performance java middleware with
a real application. In Proc. of High Performance Computing, Networking and Storage
(SC2004), Pittsburgh, USA, 2004.

[8] Miron Livny Michael Litzkow and Matt Mutka. Condor - a hunter of idle workstations. In
Proc. of 8th International Conference onDistribuitedComputing Systems, pages 104–111,
1998.

[9] M. Mitzenmacher. How useful is old information? IEEE Transactions on Parallel and
Distributed Systems, 11(1):6–34, 2000.

[10] J.L. Bosque Orero, D. Gil Marco, and L. Pastor. Dynamic load balancing in heteroge-
neous clusters. In Proc. of IASTED International Conference on Parallel and Distributed
Computing and Networks, 2004.

[11] Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal. Load distributing for locally
distributed systems. IEEE Computer, 25(12):33–44, 1992.

[12] M. M. Theimer and K. A. Lantz. Finding idle machines in a workstation-based distributed
system. IEEE Trans. Softw. Eng., 15(11):1444–1458, 1989.

[13] W. Zhu, C. Steketee, and B. Muilwijk. Load balancing and workstation autonomy on
amoeba. Australian Computer Science Communications, 17(1):588–597, 1995.

121Load Information SharingPolicies inCommunication-IntensiveParallel Applications

PARALLEL COMPUTATIONS ∗

Carlo Bertolli, Massimiliano Meneghin
Department of Computer Science
Parallel and Distributed Research Group
University of Pisa
Largo Bruno Pontecorvo, 3, Pisa, 56125 Pisa, Italy

bertolli@di.unipi.it

meneghin@di.unipi.it

Joaquim Gabarro
Universitat Politècnica de Catalunya, ALBCOM Research Group
Edifici Ω, Campus Nord Jordi Girona, 1-3, Barcelona 08034, Spain

gabarro@lsi.upc.edu

Abstract One of the main issues for Grid applications is to deal with frequent failures, due
to the dynamic and distributed nature of Grid platforms. This issue becomes even
more important if we want to exploit Grid platforms to support High-Performance
applications. Our work starts from the choice of structured parallelism (e.g.
skeletons) as programming model to attack this issue. We present our study of
the performance impact of failures on the execution time of a specific class of
structured parallel programs, namely task parallel computations. We introduce
a Markov model for task parallel computations and we present a framework to
study it. The result is an analytical tool for predicting the completion time of
task parallel computations, in the case the number of tasks is known in advance.
Otherwise such a number is unknown, we can still obtain the steady-state per-
formance. We describe the framework and we present preliminar experimental
results to validate it.

Keywords: Parallel Computing, Fault Tolerance, High-Level Programming, Structured Par-
allel Programming, Performance Models

∗All authors were partially supported by the FP6 Network of Excellence CoreGRID funded by the Euro-
pean Commission (Contract IST-2002-004265). Carlo Bertolli was also partially supported by the FIRB
In.Sy.Eme. Project. Joaquim Gabarro was also partially supported by FET pro-active Integrated Project
15964 (AEOLUS) by Spanish projects TIN2005-09198-C02-02 (ASCE) and MEC-TIN2005-25859-E and
TIN2007-66523 (FORMALISM).

A MARKOV MODEL FOR FAULT-TOLERANT TASK

124 COREGRID SYMPOSIUM

1. Introduction

Grid computing platforms [5] have been exploited to support High-Perfor-
mance applications as they can provide the required computing power. In
general, the exploitation of grid platforms is made difficult by the high frequency
of failures affecting the resources. As a consequence, in the specific case of
High-Performance applications, it is difficult to ensure any kinds of Quality of
Service (QoS), because of failures.

We face this issue by targeting structured parallel programming. A struc-
tured parallel program is composed of high-level parallel structures (e.g. skele-
tons [4]), for which there is some compile-time knowledge of the interactions
between the parallel entities performing the computation. Along with other
important properties, this knowledge allows to introduce simple fault tolerance
strategies. In our study we introduce Markovian models of the computations,
and related fault tolerance strategies, to obtain an analysis of the run-time im-
pact of failures on the computation performance. Markovian models have been
deeply studied in the context of parallel and distributed computing to analyze
the impact of failures of the performance of computations. For instance, in
[9] a markovian model is exploited to analyze the performance impact due to
failures in the case of a two-level recovery scheme for fault tolerance. The
computation model consists in a set of processes executing a distributed pro-
gram, interacting through message-passing, and periodically taking consistent
checkpoints. The recovery scheme is two-level in the sense that checkpointing
is performed on both volatile and stable storage supports at different frequen-
cies, and the recovery is different depending on the failures, and the availability
of collected information. The developed markov model allows to prove that the
two-level scheme enable higher resiliency degrees w.r.t. one-level schemes. In
[10] the computation model consists of performing a set of independent task,
supporting fault tolerance by checkpointing, i.e. partial execution of tasks is
periodically checkpointed. The failure model considered includes software er-
rors, i.e. the execution of a task can deliver an incorrect result. A Markow
Reward Model is exploited to analyze the performance impact of checkpoint-
ing schemes based on task duplication. Parameters of the Markovian model are
the average time intercurring between checkpoints, and the total average task
execution time. The paper analyzes four different schemes for fault tolerance,
mixing checkpointing, software replication techniques and forward recovery.

In this paper, we show the results of our study on the performance impact
of failures for a specific class of structured parallel computations, namely task
parallel. In [2–3] we have addressed this issue by introducing a formal Markov
model for task parallel computations subject to failures. The Markov model
describes how the completion time of task parallel computations behaves when
the failure probability of Grid resources and the total number of tasks to be

A Markov Model for Fault-Tolerant Task Parallel Computations 125

performed are known. Indeed, we obtained upper bounds of completion times
for base cases (2 tasks performed on 2 resources being the most complex one),
validated by experimental results [3]. We present our study on the Markov
model for the general case of n tasks performed on m resources. The final
result is a framework that allows to study the performance impact due to failures,
which correctness is validated by experiments we performed on some interesting
cases, characterized by values of n larger than m.

The outline of the paper is the following. In Section 2 we recall the pro-
gramming and computation model we target and its fault tolerance support.
In Section 3 we describe the Markov model we introduced and we present a
framework to study the recursive equation presented in [2]. Two fundmental
items of this work, Tstay and Tjump representing the average time spent in a
level of the Markov chain and the average time spent going from one level to
the next one are introduced. In Section 4 we develop a worked example with
n = 4 and m = 2. In Section 5 the value Na representing the average number
of entries of a given state is is considered. In Section 6 we present a simplified
framework to study the time needed to execute n tasks on m resources and we
give experimental results to validate the approach. Finally, in Section 7, we
give the conclusions of this paper.

2. Computation Model and Fault Tolerance

Our study on the run-time quantitative behavior of parallel computations is
based on the muskel programming environment (see [1]). A muskel program
is a macro data-flow graph composed of sequential and parallel modules, con-
nected through streams, i.e. possibly unlimited sequences of typed elements.
Parallel modules are expressed as skeletons[4], expressing well-known parallel
structures, that can be nested in arbitrary hierarchies. Examples of skeletons
that can be used to implement a parallel algorithm are farm and pipeline. Farm
computations express a task parallel computation, where a set of workers per-
forms the same program on different input data (obtained from an input stream),
and delivering an output stream of results (one for each task). In a pipeline com-
putation, each element received from an input stream is passed to a set of nested
functions (e.g. out = F1(F2(. . . Fn(in) . . .))), and the results are delivered to
an output stream. Each function Fi is implemented in a different stage, and the
evaluation of two functions on different input elements are independent, and
can happen in parallel.

The implementation of muskel is based on a master-slave strategy:

• A whole data-flow graph is mapped in each slave, that represents the
unit of parallelism. The data-flow graph can be modeled as a function F,
which application to an input data represents the task of the computation.
A slave computation consists in iteratively: (1) receiving an input value

126 COREGRID SYMPOSIUM

from the master; (2) applying it as actual parameter of F, and producing
a result; (3) returning the result to the master. This scheme is applied
to a stream of input values (produced by the master), and it produces an
output stream of results (consumed by the master).

• The master owns a local queue of tasks (i.e. the input data), and is
responsible of coordinating slaves: it schedules to workers the input
data, and it receives results back from slaves.

We define an abstract description of the implementation model of muskel ,
to introduce its mathematical formulation. The model consists in a set of n
tasks performed on m resources. Each task is performed independently with
each other. We assume that each task can be performed in an average execution
time, denoted with the symbol δ.

For what concern failure modeling, in this paper we target the fail-stop failure
model [7] for slaves and we assume that the master cannot fail. Each slave fails
independently of the other ones and with a known probability q = 1−p, where
p is the probability of success. The failure of a slave corresponds with the lost of
the computation related to the last received input element. We abstractly model
this as the failure of the task execution (with probability q). When a slave fails,
the master is notified of its failure by the low-level communication support. The
fault tolerance support is based on re-scheduling of the failed tasks: whenever
a slave fails, the master detects the failure, and it re-schedules the lost task to an
available slave [3]. We also assume that failed slaves are eventually restarted by
some sub-system, and they re-join the computation. The time needed to detect
a failure, plus the one needed to restart a slave has a known average (denoted
with Δ) that is a parameter of our model.

In our previous study [2] we introduced a Markovian model of the computa-
tion to model fault-prone executions. The model exploits a Bulk-Synchronous
Parallel (BSP)-like scheme, where the computation is composed of super-steps,
each including a computation and communication phase. Supersteps are se-
quentialzed by synchronizing the parallel execution during the communication
phase. In our model, at each super step:

• The master schedules an input element to each slave.

• The slaves perform the computation in parallel w.r.t. each other, and they
either succeed (with probability p) or fail (with probability q).

• The master re-schedule the next set of tasks only after each slave either
returned a result, or failed and restarted.

As highlighted in [3], we exploit this model to obtain an upper bound of the
actual completion time, but not in the actual implementation of muskel . In
muskel slaves are directly re-scheduled withtout waiting for all other ones

A Markov Model for Fault-Tolerant Task Parallel Computations 127

Variable Meaning

n number of tasks to be performed
m number of slaves
p probability of success of evaluation of F on an input value
q = 1 − p probability of failure of evaluation of F on an input value
δ average task execution time
Δ average time needed to detect a failure, and restart the a slave
μ is the maximum between δ and Δ

Table 1: Table of the notation used in the rest of the paper.

performed in parallel to either fail or succeed. We demand to the continuation
of this work a full proof of the differences between the Markov model, and the
implementation one. In the rest of the paper we exploit the notation described
in table 1.

3. A General Markov Model for Fault Tolerance

In this section, we introduce and discuss a Markov model [6] describing the
impact of failures on the computation completion time. Figure 1 is a graphical
representation of the model. The states of the Markov chain are represented as
black circles labeled with two indexes. The first index denotes the level (see
below) at which we place the state, while the second one denotes the relative
position inside the level. A state of the Markov chain represents a specific point
in the computation we have reached and it can be formalized as the number of
tasks that remain to be performed:

t(i , j) =
{

n i = 0 and j = 0
n − ((i − 1)m + j) oth.

With the initial state (0, 0) we represent the fact that n tasks have to be per-
formed. Each level of the model includes exactly m states. For simplicity, we
assume that n is a multiple of m. We define an initial level 0 that includes just the
initial state (0, 0). Level 1 include states from (1, 1) to (1,m), where: in (1, 1)
we have performed a single tasks, and n−((1−1)m+1) = n−1 are still to be
performed. In (1,m) we have performed m tasks, and n− ((1− 1)m + m) =
n − m are still to be performed. Below, for labeling the states, we sometimes
exploit their t(i, j) value, instead of the pair notation (i, j).

Now consider the state (0, 0). Recall that we exploit exactly m resources to
perform tasks. We assign a task to each of the m resources, and we can obtain
0 to m failures. In the case we obtain m failures, we remain in state (0, 0). In
the case we obtain m − 1 failures, we have performed 1 task, and we transit

128 COREGRID SYMPOSIUM

Figure 1: Representation of the Markov model of computation of n tasks on m resources (with
n >> m), where each resource can fail with probability q.

in state (1, 1), in the next level. If we obtain 0 failures, we go directly down
to state (1,m). As the maximum degree of parallelism is m, we cannot obtain
more than m successes. Thus, we cannot go from level 0 to level 2 with just
one transition. We have first to pass from at least one of the states belonging
to level 1. This is the general semantics behind the characterization in levels of
the Markov model.

In a generic computation, we will transit in some states inside the same level.
Next, we jump into a state in the next level. The transition probabilities and
their weights are given by the general formula for n ≥ n introduced in [2]:

Tn,m = qm(Δ + Tn,m) +
m−1∑
k=1

(
m

k

)
pkqn−k(μ + Tn−k,m) + pm(δ + Tn−m,m)

Consider the highlighted state (i, j) in Fig. 1. We schedule m tasks, and we
can:

• Remain in (i, j), if we obtain m failures. This event has probability qm

and it costs Δ.

• Transit in a state at the right of (i, j), if the number of successes is not
sufficient to change level. For instance, we can transit in state (i, j+k), if
we obtain k successes, and m−k failures. This transition has probability(m

k

)
pkqm−k, and it has a weight of μ seconds.

• Transit down-left in a state (i+1, j− l) in the next level. In this case, we
obtain a number of successes sufficient to make us change level. In this

A Markov Model for Fault-Tolerant Task Parallel Computations 129

specific case, the transition has probability
(m

l

)
pm−j−lql, and it costs μ

seconds.

• Transit directly down, if we obtain m successes. We take this transi-
tion with probability pm, and it costs δ seconds, i.e. the average tasks
execution time (as we perform all tasks in parallel).

It remains to consider the case 0 ≤ n < m. Of course, when n = 0 it holds
T0,m = 0. For 0 < n < m, we have

Tn,m = qn(Δ + Tn,m) +
n−1∑
k=1

(
m

k

)
pkqn−k(μ + Tn−k,m) + pnδ

Note that, two types of transitions are not admitted in our model. Transitions to
the left are forbidden. According to the fault tolerance model, we cannot loose
results that we have performed in previous steps (see Sect. 2). Transition to the
down-right are also forbidden. This happens because we can obtain up to m
successes for a transition. Going to the down-right means that we obtain more
than m successes.

Each computation features a different path in the computation states, but we
can characterize a general behavior. Consider the level k: we transit in one of
the states of level k, from a state of the level k − 1; we transit in one or more
states (possibly all) of the level k, until we jump to one of the states at the next
level k +1. From a quantitative viewpoint, we can characterize each level with
two quantities. Tstay(k) is the average time passed in level k and Tjump(k),
the average time needed to jump from level k to level k + 1. According to
[9], Tstay(k) =

∑
a,b∈k Va,bQa,bNa, the sum is over all transitions a → b in

level k, Va,b is the time needed in a → b, Qa,b is the probability of a → b
and Na and that is the average number of entries into state a. Similarly, we
can compute the average time needed to jump from a level k, to its successor
k + 1 by considering all the transitions from a state a at level k to the state b at
level k + 1: Tjump(k) =

∑
a∈k,b∈k+1 Va,bQa,bNa. The expected time can be

computed as

Tn,m =
∑

0≤k≤m/n

Tstay(k) +
∑

0≤k<m/n

Tjump(k)

4. Example with 4 taks and 2 slaves

We develop the preceding approach in a small example with m = 2 and
n = 4. Denoting Tk,2 = τk for 0 ≤ k ≤ 4 we have the equations

τk = q2(τn + Δ) + 2pq(μ + τk−1) + p2(δ + τk−2) , 2 ≤ k ≤ 4
τ1 = q(τ1 + Δ) + pμ , τ0 = 0

130 COREGRID SYMPOSIUM

Figure 2: Markov model of computation of n = 4 tasks on m = 2 slaves, each slave can fail
with probability q. State numbering denotes the number of pending tasks.

For 2 ≤ k ≤ 4 the recurrence for τk follows the general formula given in
Section 3. For k = 1 only one slave is needed because only one task need to
be executed. Finally for k = 0, τ0 = 0 because there are no pending tasks.
The Figure 2 is a rewriting of the recursive equations in terms of the absorbing
Markov chain (the Figure 2 is a concrete example of Figure 1). States in Figure
2 are numbered by the number of pending tasks, 4 is the initial state and 0 is
the final absorbing state.

In the following we use recurrence equations to find Tstay(k) and Tjump(k)
for 0 ≤ k ≤ 2. Starting from 4, the expected time before absortion verifies
τ4 = q2(τ4 + Δ) + 2pq(μ + τ3) + p2(δ + τ2) and therefore τ4 = q2

1−q2 Δ +
2pq

1−q2 (μ+τ3)+ p2

1−q2 (δ+τ2). This equation give us directly Tstay(0) = q2

1−q2 Δ

and Tjump(0) = 2pq
1−q2 μ + p2

1−q2 δ. Using the notations given in Section 3

Tstay(0) = V4,4Q4,4N4 = Δq2 1
1 − q2

Tjump(0) = V4,3Q4,3N4 + V4,2Q4,2N4 = μ2pq
1

1 − q2
+ δp2 1

1 − q2

where we can identify N4 = 1
1−q2 . From this point, we have to analyse the

system from level 1 represented by the expression 2pq
1−q2 τ3 + p2

1−q2 τ2. Unfolding

A Markov Model for Fault-Tolerant Task Parallel Computations 131

this equation an enough number of times we obtain

Tstay(1) =
q2

1 − q2
Δ +

(2pq

1 − q2

)2(
μ +

q2

1 − q2
Δ
)

The term q2

1−q2 Δ is the expected time looping around states 3 and 4. The term(
2pq

1−q2

)2(
μ + q2

1−q2 Δ
)

give us the probability to take transiton (3, 2) coming

from 4 multiplied by the expected time going from 3 to 2 and looping in 2
before leaving. It can be rewriten as

Tstay(1) = V3,3Q3,3N3 + V3,2Q3,2N3 + V2,2Q2,2N2

= Δq2 2pq

1 − q2

1
1 − q2

+ μ2pq
2pq

1 − q2

1
1 − q2

+

+ Δq2
((2pq

1 − q2

)2
+

p2

1 − q2

) 1
1 − q2

We have N3 = 2pq
1−q2

1
1−q2 and N2 =

((
2pq

1−q2

)2
+ p2

1−q2

)
1

1−q2 . Following this

analysis we find

Tjump(1) =
2pq

1 − q2
μ
((2pq

1 − q2

)2
+

p2

1 − q2

)
+

p2

1 − q2
δ
((2pq

1 − q2

)2
+ 1
)

Tstay(2) =
((2pq

1 − q2

)3
+ 2

pq

1 − q2

p2

1 − q2

)(
δ +

q

1 − q
Δ
)

5. Computation of the Average Number of State Entries

Recall that we denote with Ns the average number of entries in the state s
(where s is the number of tasks that remain to be performed in that state). We
want to estimate the value of Ns for each non absorbing state s. When s is
different from the initial state, we have [9]:

Ns =
∑

{t|(t,s)is an arc}
Pt,sNt

where Pt,s is the probability of taking the transition t → s. When s is the initial
state we have Ns = 1 +

∑
{t|(t,s)is an arc} Pt,sNt.

Example 1 Let us recompute Nk for 4 ≤ k < 0 for Figure 2. Using the
equations

N4 = 1 + q2N4 , N3 = q2N3 + 2pqN4 , N2 = q2N2 + 2pqN3 + p2N4

132 COREGRID SYMPOSIUM

we reobtain N4,N3 and N2. Finally N1 = qN1 + 2pqN2 + p2N3 and

N1 =
1

1 − q
2pqN2 +

1
1 − q2

p2N3

=
1

1 − q

(2pq

1 − q2

)3
+ 2

1
1 − q

2pq

1 − q2

p2

1 − q2

We can check the correctness of the whole approach recomputing

Tjump(1) = δp2N3 + μ2pqN2 + δp2N2

Tstay(2) = ΔqN1 + δpN1

Let us consider the general case. According to the Figure 1, (0, 0) corre-
sponds to the inital state with n tasks to be executed. As in the example we iden-
tify (0, 0) and n. As Nn = 1+qmNn we obtain Nn = 1

1−qm . Consider the state

(1, 1) with n− 1 tasks has to be executed, as Nn−1 = mpqm−1Nn + qmNn−1,

Nn−1 = m
pqm−1

(1 − qm)2

Figure 3: Snapshot of the graphical representation of markov models in the case of m = 5 and
n = 15, to compute the average number of entries into state 5.

Example 2 Before to write the general case we consider the casem = 5 and
n = 15. We want to compute the expected number of entries into state s = 7.
Note that state 7 appears in the second level of the Markov chain. In Fig. 3 we
show the representation of the portion of graph needed to computeN7. We sum
up all the contributions to enter 7 and we get

N7 =
1

1 − p5

(
5pq4Ns+1+10p2q3Ns+2+10p3q2Ns+3+5p4qNs+4+p5Ns+5

)

A Markov Model for Fault-Tolerant Task Parallel Computations 133

We can now easily generalize this formula to the case of m resources:

Ns = pmNs+m + qmNs +
∑

0<k<m

(
m

k

)
pkqm−kNs+k

=
1

1 − qm

(
pmNs+m +

∑
0<k<m

(
m

k

)
pkqm−kNs+k

)

6. A Framework to Compute Approximate Values for Tn,m

As we have seen the values of Na are different for different nodes a. Next
we study experimentally the possibility to replace all the different values by a
unique average. We can apply the formula allowing to compute Ns to concrete
examples in order to get an idea of the behavior of this value. We have imple-
mented a simple program that takes as input the quantities describe in Table 1,
and produces the N value for all states of the Markov chains. The results are
shown in Tables 2, 3 4, and 5.

n m δ Δ p Navg Nvar

500 5 10 5 0.9 0.223 0.0022
500 5 10 5 0.8 0.251 0.0015
500 5 10 5 0.5 0.401 0.001
1000 5 10 5 0.9 0.223 0.0011
1000 5 10 5 0.8 0.250 0.0007
1000 5 10 5 0.5 0.400 0.0004
2000 5 10 5 0.9 0.222 0.0006
2000 5 10 5 0.8 0.250 0.0004
2000 5 10 5 0.5 0.400 0.0002

Table 2: Evaluation of N for n = 5, and n = 10.

From these numerical results, it seems a reasonable hypothesis to take the
same average value N . Therefore we assume the following:

Working Hypotesis. In the computation of Tstay and Tjump we replace all the
values Na by an average value N .

First consider the average time passed in the level k:

Tstay =
∑
a,b∈k

Va,bQa,bNa ≈ N ·
∑
a,b∈k

Va,bQa,b

= N ·
[
mΔqm +

∑
0<k<m

(m − k)μ
(

m

k

)
pkqm−k

]

134 COREGRID SYMPOSIUM

n m δ Δ p Navg Nvar

500 10 10 5 0.9 0.112 0.0026
500 10 10 5 0.8 0.126 0.0020
500 10 10 5 0.5 0.201 0.0014

1000 10 10 5 0.9 0.112 0.0013
1000 10 10 5 0.8 0.125 0.0010
1000 10 10 5 0.5 0.200 0.0007
2000 10 10 5 0.9 0.111 0.0007
2000 10 10 5 0.8 0.125 0.0005
2000 10 10 5 0.5 0.200 0.0004

Table 3: Evaluation of N for n = 5, and n = 10.

n m δ Δ p Navg Nvar

500 20 10 5 0.9 0.056 0.0030
500 20 10 5 0.8 0.063 0.0023
500 20 10 5 0.5 0.101 0.0018

1000 20 10 5 0.9 0.056 0.0015
1000 20 10 5 0.8 0.063 0.0011
1000 20 10 5 0.5 0.100 0.0009
2000 20 10 5 0.9 0.056 0.0007
2000 20 10 5 0.8 0.063 0.0006
2000 20 10 5 0.5 0.100 0.0004

Table 4: Evaluation of N for n = 5, and n = 10.

n m δ Δ p Navg Nvar

510 30 10 5 0.9 0.038 0.0030
510 30 10 5 0.8 0.043 0.0023
510 30 10 5 0.5 0.068 0.0019

1020 30 10 5 0.9 0.037 0.0015
1020 30 10 5 0.8 0.042 0.0012
1020 30 10 5 0.5 0.067 0.0009
2010 30 10 5 0.9 0.037 0.0008
2010 30 10 5 0.8 0.042 0.0006
2010 30 10 5 0.5 0.067 0.0005

Table 5: Evaluation of N for n = 5, and n = 10.

A Markov Model for Fault-Tolerant Task Parallel Computations 135

n p Tc exp. Tc th. dev. (%)
500 0.9 1014.695 1115.106 9%
500 0.8 1025.893 1253.799 18%
500 0.5 1648.587 1972.688 16.43%

1000 0.9 2037.750 2226.211 8.47%
1000 0.8 2057.511 2503.599 17.82%
1000 0.5 2763.726 3941.438 29.88%
2000 0.9 4047.495 4448.422 9.01%
2000 0.8 4392.028 5003.199 12.22%
2000 0.5 6559.243 7878.937 16.75%

Table 6: Experimental results for m = 5.

We can similarly consider all the transitions from any states at a level k to any
states at level k + 1, and compute Tjump as:

Tjump =
∑

a∈k,b∈k+1

Va,bQa,bNa ≈ N ·
∑

a∈k,b∈k+1

Va,bQa,b =

= N ·
[
mΔpm +

∑
0<k<m

(m − k)μ
(

m

k

)
pm−kqk

]

We have performed experiments exploiting the muskel support, as extension
of the ones performed for simple cases (refer to [3] for a complete description
of the simulation environment). We have chosen to test the cases for m = 5,
and m = 10, with numbers of tasks equal to 500, 1000, and 2000, with δ = 10,
Δ = 5, and μ = 10. Tables 6 and 7 show the completion times we obtained
from the experiments, the corresponding one computed according to the Tstay

and Tjump quantities, and their deviation w.r.t. the theoretical value. Apart of
some issues (that we do not discuss here for brevity), the deviation seems to
increase with the probability of failure, that actually gives more uncertainty to
the actual result. We demand to the future work extensive experiments.

7. Conclusions

We have presented a study of a Markov model for task parallel computations
subject to failures, with known probability quantities. The study resulted in a
framework to evaluate the program completion time, instead of giving a direct
solution, in the form of a formula, to the recurrence equation describing the
Markov model. We have validated the theoretical results with experiments:
we obtained that our approach provides an upper bound that, depending on the
quantities in play, remains tight to the experiment results.

136 COREGRID SYMPOSIUM

n p Tc exper. Tc theo. dev. (%)
500 0.9 513.856 560.056 8.25%
500 0.8 595.157 629.500 5.46%
500 0.5 851.208 1004.010 15.22%

1000 0.9 1028.474 1115.611 7.81%
1000 0.8 1036.899 1254.500 17.35%
1000 0.5 1706.031 2003.521 14.85.77%
2000 0.9 2062.921 2226.722 9.01%
2000 0.8 2096.943 2504.500 12.22%
2000 0.5 2165.239 4002.545 16.43%

Table 7: Experimental results for m = 10.

References

[1] M. Aldinucci and M. Danelutto. Algorithmic skeletons meeting grids. Par. Comp., 32(7-
8):449–462, 2006.

[2] C. Bertolli and J. Gabarro. On the cost of Task Re-Scheduling in Fault-Tolerant Task
Parallel Computations. CoreGRID Integr. Work. 2008. Poster Session, 2-4 April 2008
Crete.

[3] C. Bertolli and J. Gabarro. On the cost of Task Re-Scheduling in Fault-
Tolerant Task Parallel Computations. CoreGRID REP 104 Tech. Rep., avail. at:
http://www.coregrid.net/mambo/images/stories/REP/tr-coregrid.pdf

[4] M. Cole Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel
programming Par. Comp., 30(3): 389–406, Elsevier 2004.

[5] I. Foster and C. Kesselman, editors. Thegrid: blueprint for a newcomputing infrastructure.
Morgan Kaufmann Pub. Inc., San Francisco, CA, USA, 1999.

[6] J. Kemeny and J. Snell; Finite Markov Chains. Springer,1976.

[7] R. D. Schlichting and F. B. Schneider. Fail-stop processors: an approach to designing
fault-tolerant computing systems. ACM Trans. Comput. Syst., 1(3):222–238, 1983.

[8] K. S. Trivedi. Probability and Statistics with Reliability, Queuing and Computer Science
Applications. John Wiley and Sons Ltd., 2002.

[9] N. H. Vaidya. A Case for Two-Level Recovery Schemes. In IEEE Trans. Comput., Vol. 47
Numb. 6, 1998. IEEE Comp. Soc., Washington, DC, USA.

[10] A. Ziv and J. Bruck. Analysis of checkpointing schemes for multiprocessor systems In
Procs. of 13-th Symp. on Rel. and Distr. Systems., 1994. IEEE. Comp. Soc.

III

SERVICE LEVEL AGREEMENT AND SELF-*

TOWARDS SLA-BASED
SOFTWARE LICENSES AND LICENSE
MANAGEMENT IN GRID COMPUTING

Jiadao Li, Oliver Wäldrich, Wolfgang Ziegler
Department of Bioinformatics
Fraunhofer Institute SCAI
53754 Sankt Augustin, Germany

{jiadao.li, oliver.waeldrich, wolfgang.ziegler}@scai.fraunhofer.de

Abstract Software protection and licensing are important topics for both the independent
software vendors and software users. In Grid environments, the use of license
protected applications is almost impossible and becomes a challenging task. The
reasons are twofold: (i) there are no business models of the independent software
vendors for the Grid and (ii) there is no licensing technology suitable for Grid
environments. In this paper, the state of the art of license management in software
industry as well as the current practice for managing the licenses in Grid com-
puting is presented. The challenges and requirements of managing the software
license in Grid environments are identified. Two general models developed in the
European projects BEinGRID and SmartLM for managing the software licenses
in Grid computing based on service level agreement (SLA) are presented.

Keywords: Grid, license mechanisms, service level agreements

140 COREGRID SYMPOSIUM

1. Introduction

Grid computing is considered a cornerstone of next generation distributed
computing, which is defined as “coordinated resource sharing and problem
solving in dynamic, multi-institutional collaborations”. Current Grid comput-
ing infrastructure is built in accordance with the service oriented architecture
(SOA [17]) paradigm. A service-oriented architecture is one in which all en-
tities are services. The services [33] may include both traditional resources
(e.g., compute services offered, network bandwidth, or space on a storage sys-
tem) and virtualized services (e.g., database, data transfer, simulation, licenses),
which may differ in the functions they provide to users but are consistent in the
manner in which they can deliver those functions across the network. In Grid
computing, the co-allocation of different kinds of services (compute resources,
memory capacity, applications, etc) usually belonging to different resource/ser-
vice providers is needed in order to satisfy the needs of a complex job. Virtual
organizations (VOs) are dynamically created according to the requirements of
different jobs (users). The jobs will potentially be scheduled and relocated
across the whole Grid, and users might have no knowledge about the places
where their jobs are to be executed. The current practice of managing and us-
ing the software licenses is limited to the local administrative domain while Grid
infrastructure is usually stretching across domains as we introduced before. As
a result, the users often can not use Grid resources because the applications they
need are not licensed on the remote resources.

To this end, software licenses become a major obstacle for the users to use
Grid infrastructures. Moreover, if possible at all, using Grid resources with
the current licensing and pricing models of the independent software vendors
(ISVs) is most often more expensive than running the application locally. To
leverage use of Grid resources for license protected applications flexible pricing
and licensing models for the benefit of both the software vendors and users are
needed [8], [31].

To better integrate licenses into Grid infrastructure software licenses should
become schedulable and manageable services as other services. Service level
agreements (SLAs) have turned out to be a valuable instrument for agreements
on the terms of service usage and reservation in different administrative do-
mains. We see a SLA-based license management approach as the appropriate
solution to the licensing problem in the Grid. Two different, complimentary
approaches will be briefly presented, which are currently under development in
the European projects BEinGRID and SmartLM.

The rest of the paper is organised as follows: In Section 2 we briefly give
an overview on existing technologies. Section 3 presents the existing models
for licensing and pricing. Current work on two different, complimentary ap-

Towards SLA-based Software Licenses 141

proaches is presented in Section 4 and Section 5 concludes the paper with an
outlook.

2. Related Work

To the best of our knowledge currently there are no other approaches to
overcome the licence problem in the Grid, except for the approaches for license
scheduling described in Section 4. However, software protection and license
management is an important topic for the software industry and under contin-
uous discussion, e.g. SoftSummit [19] is an executive conference dedicated to
strategies and best practices for software licensing, pricing as well as applica-
tion packaging and license tracking. Within a single adminstration domain, the
centralized license management paradigm is suitable and efficient to manage
the licenses. To this end, there are many license management systems from
different companies available, e.g., LUM from IBM [6], License asset manager
from TeamEDA [9], iFOR/LS from HP [28], RLM [14] from reprise software,
Open iT [12], license tracker [20], Sentinel software protection and licensing
package from SafeNet Inc [16], FLEXnet manager from Macrovision [24, 23,
26, 25, 27]. The license management system should be in charge of the whole
life cycle of the license use, which includes: demonstration licenses, evaluation
licenses, full-production licenses, product updates, maintenance releases, etc.
Most often used common license models supported by these license manage-
ment toolkits are described below. Some of these mechanisms need the license
servers and vendor daemons, while other mechanisms do not need them.

To this end, FLEXnet is a typical license management toolkit used by many
ISVs. The FLEXnet manager provides numerous kinds of license models sup-
porting different scenarios. The ISVs decide and offer the different license
policies based on the currently available models in FLEXnet in order to satisfy
the needs of their users while increasing the revenue at the same time. Today,
we see limited incremental progress towards more flexible licensing solutions
on the side of the companies providing the licensing technology, and even less
progress on the side of the ISVs. It must also be mentioned that the price for
both licensing solutions leveraging flexibility of the end-user and pricing of the
ISVs increases with degree of flexibility, which clearly is a show-stopper for
usage of commercial applications in Grids.

3. Current license and pricing models

In this section we give an overview on current models. We use licensing
models (and terminology) of FLEXnet, as this is the technology for software
licensing most often used by ISVs and the other licensing technology providers
offer either subsets of models supported by FLEXnet or quite similar models.

142 COREGRID SYMPOSIUM

3.1 Typical License Models

The basic license models provided by FLEXnet [24, 23, 26, 25, 27] presented
next can be combined to create new license models.

Node-locked licenses: Node-locking means the software can only be used on one machine
or a set of machines. There are two types of node-locked licenses: uncounted and counted. For
the counted node locked licenses, a license server and a vendor daemon are necessary.

Floating (concurrent) licenses: Anyone on the network can use the licensed application, up
to the limit specified in the license file (also referred to as concurrent usage or network licensing).

Mixed node-locked and floating licenses: Uncounted node-locked and concurrent usage
licenses can be mixed in the same license file, therefore more flexible usage models can be
derived.

Demo licenses/evaluation licenses: Properties of an evaluation license may include: (i)
Limited product functionalities or features, (ii) Limited number of uses, (iii) Expiration date.

Usage-based licensing: A quite important license strategy in which the actual usage patterns
are monitored by the license management system, and billing or auditing are based on the actual
usage data. FLEXnet Licensing supports several usage-based models, e.g: Overdraft: allowing
the ISV to specify a number of additional licenses which customers are allowed to use in addition
to the licenses purchased; Pay-per-use: allowing the customers to pay for the effective usage of
the licenses, which can be audited based on time, the number of transactions, etc.

Mobile licensing: Used when users want to run an application on a machine that does not
have a continuous connection to a license server system. These situations can include:

• Working on a laptop; or using a computer both at work and at home or off-site; or working
from several different computers not connected to a license server system

• Fulfilled from a prepaid license pool: The license is fulfilled from a prepaid number of
license-days for the usage period.

• Node-locked to a user name: If a license is to be used exclusively by one user on different
machines, that license can be node-locked to the user¡¯s user name.

• License rehosting: if an end-user want to move a license without using one of the other
mobile licensing methods. In this model, a new node-locked license certificate for each
new machine should be generated.

• Hard-mobile: Mobile license usage is controlled by a FLEXid. If the FLEXid is attached
to a license server system, then the use floats on the network. To temporarily transfer the
license, the user moves the FLEXid from the server to a standalone machine.

• Soft-mobile: Licenses are temporarily transferred to a license server system on the mobile
laptop. The FLEXenabled product uses an encrypted localfile, placed there by the license
server system, to do checkouts during the usage period.

• License borrowing: A license can be borrowed from a license server system via a special
checkout and used later to run an application on a computer that is no longer connected
to the license server.

3.2 Current Business and Pricing Models

ISVs usually define different licensing policies with respect to their differ-
ent products and target customers, e.g., some software vendors will provide
the enterprise software, while others provide non-enterprise business software
or consumer software. For some software products ISVs may expect a large

Towards SLA-based Software Licenses 143

number of customers, while the use of other products is limited to a specific
user group. The open source software model also has great impact on the soft-
ware licensing and pricing. To fully understand the models it is important to
realise that the ISVs do not sell software but the right to use a certain software
under dedicated conditions, which on the other hand implies that the customer
only buys the right for limited usage of the software governed by the model
he is willing to pay for. With the current move to multicore CPU technologies
with tens or hundreds of cores in one CPU, we expect strong impact on the
CPU based models. In the yearly license usage report [8] published by Macro-
vision [10], Softsummit [19], and the Centralized Enterprise Licensing User
Group (CELUG) [3], etc, a general view of typical license and business models
is given and analyzed and compared in the viewpoint of the ISVs and enter-
prises. It is evident, that the interests of software vendors and the enterprises
are conflicting. For example, the per seat model is one of the most preferred
pricing models for ISVs; while the enterprises will prefer the concurrent user
model.

In the following, typical business/pricing models for licensing the soft-
ware [8] are introduced.

Subscription: Licenses are paid for with a recurring (often annual) fee to continue using the
software. If the fee is not paid, the software stops working.

Perpetual: Licenses are paid for on a one-time basis, giving the user the right to run the
program as long as he/she chooses. It does not imply a right to upgrades, which are typically
sold separately as part of a maintenance agreement or on a per-upgrade basis. Some vendors
sell perpetual licenses on a term basis, which on the surface appears to be subscription based
because the payments are spread out over time.

Concurrent User: Software is licensed based on how many users may access the software
simultaneously. Such license models are often used for business/enterprise software.

Seat (per machine/per server): The software usage is restricted to a specific machine or
server.

Per CPU or per CPU-core: The software will be licensed to run on a specific CPU. With the
wide adoption of the multi-core CPU technologies, the ISVs will make different license policies,
that is, they will license the software per CPU or per CPU-core. Usually the enterprises will
prefer the per CPU model.

Usage metric/pay-per-use; The users will pay according to the real usage of their license.
Seat (named user): In this model, each software license and corresponding usage rights are

assigned to a specific person.
Financial metric based licensing: License models that are based on varying business, usage

or financial metrics, such as revenue, budgets, or cost of goods sold.

Custom contract: For some business sectors, e.g., Electronic Design Automation (EDA)

software, there is no price list, prices will be agreed upon individually in the customer contracts.

Similar to the licensing models the individual business/pricing models can
be combined. There will be different business models with respect to different
versions of the business software. e.g., Oracle is charging differently depending
on different versions [29]. There are some new trends for the software license
using and pricing according to the yearly license usage report [8], e.g., the

144 COREGRID SYMPOSIUM

subscription model will become more and more predominant method to license
the software. The ISVs expect that the subscription model will increase their
revenue in the future and their software will be more widely adopted.

3.3 Software as a Service
Software as a service (SaaS) is a rapidly growing business model of software

usage and in consequence software licensing. In contrast to traditional models
where users buy a perpetual-use license, SaaS users buy a subscription from
the service publisher. Whereas traditional ISVs typically release new product
features as part of new versions of software once in a few years, publishers using
SaaS have an incentive to release new features as soon as they are completed.
There are several key characteristics of software delivered by SaaS which are
identified in the report of IDC [38], including:

• Network-based access to and management of commercially available software

• Activities that are managed from central locations rather than at each customer’s site,
enabling customers to access applications remotely via the Web

• Application delivery that typically is closer to a one-to-many model (single instance,
multi-tenant architecture) than to a one-to-one model, including architecture, pricing,
partnering, and management characteristics

• Centralized feature updating, which obviates the need for downloadable patches and
upgrades.

The property of the software as a service [32] licensing model leads to greater
investment in product development under most conditions. This increased in-
vestment leads to higher software quality in equilibrium under SaaS compared
to perpetual licensing. However, there are some weaknesses in this model, e.g.,
the prerequisite of accessing the software is the internet connection, and also
sensitive information of the users will probably be stored at the SaaS provider
side, thus a trust relationship has to be established. According to the predic-
tions of Gartner [5], by 2012, at least one-third of business application software
spending will be as service subscription instead of as product license. All
leading business applications vendors (Oracle, SAP, Microsoft) and many web
technology leaders (Google, Amazon) will promote this model, and the SaaS
model of deployment and distribution of software services will become the
mainstream use during the next five years. There are some companies which
are adopting the SaaS models, e.g., NetSuite [11] offers subscription-based
access to its enterprise resource planning (ERP), CRM, business intelligence
software which is targeted toward small and medium-sized businesses. Sales-
force.com [15] as one of the pioneers in deploying the SaaS, it provides the on
demand customer relationship management solutions built on its infrastructure
and the services will be delivered directly to users over the internet. The SaaS
model is mostly attractive for smaller businesses because they are less willing
to invest in large, expensive systems that they have to maintain.

Towards SLA-based Software Licenses 145

3.4 License Scheduler

If the number of available licenses available for an enterprise is limited, e.g.,
due to the cost factor, it is necessary that these licenses are efficiently man-
aged and highly utilised since even if an enterprise can apply for additional
licenses from the ISV, it has to pay for the extra licenses. A local license sched-
uler could help scheduling the licenses of a site efficiently. However, while
in most cases the local license management system provides information on
the licenses already in use and still available there are no built-in queuing or
reservation mechanisms. While an external scheduler might create an efficient
schedule for the available licenses based on the users’ requests, monitoring the
use of the licenses and enforcing the schedule is difficult due to the usually en-
crypted communication between license server and application. Co-operations
between license technology providers and license scheduler implementations
could be a way to overcome this limitation. For instance, platform comput-
ing offers a product called LSF license scheduler [13] which is a local license
scheduler restricted in a single administration domain and manages the license
tokens instead of controlling the licenses directly. The current available num-
ber of licenses can be obtained by the FLEXnet manager. There are several
license scheduling polices provided, e.g., fairshare, round robin, preemption.
The licenses can also be checked out for the non-LSF jobs. In this way, the
licenses can be scheduled and co-allocated with other resources/services. Dong
et al. [34] developed a software sharing system in the grid environment which is
not restricted to a single domain. The system adopts the constellation model for
resource management and combines the sharing and scheduling of both hard-
ware and software license resources. However, there is no support for SLAs
and QoS in this system.

4. SLA Based Software Licenses and License Management

As introduced before, license management in Grid context is challenging. In
the following sub-sections we will analyse the requirements and challenges for
license management and present two solutions developed in European projects.

4.1 Requirements and challenges for license usage and
license management in Grids

The different business/pricing models introduced before can be leveraged
in Grid environments, however, the requirements and usage mode in the Grids
should be considered. Obviously, the license models in Grids should be evolu-
tionized in order to allow a smooth transition from the current practice dealing
with the challenges from both technical and business/pricing aspects. The fol-
lowing list identifies these aspects in detail:
Different administrative domains: License management may involve more than a single ad-
ministrative domain. Therefore, issues like e.g., firewalls, remote usage control should be con-

146 COREGRID SYMPOSIUM

sidered. Also, different usage policies might be defined for different administrative domains.
Transparent management: Licenses should be transparently managed as part of the Gird job
management.
Co-allocation of different resources: Co-allocation of computing resources and software li-
censes should be supported. Software licenses should be co-scheduled together with other kinds
of services or resources.
Remote license enforcement Jobs may be executed remotely while the validity of the licenses
has to be guaranteed at the same time.
Virtual organizations (VOs): In the Grid VOs are often dynamically created and their members
need temporal access rights for specific software suites from different domains, so flexible means
of obtaining the temporal licenses should be provided.
Dynamicity: The ability to suspend, preempt and resume the license use should be supported.
Interoperability: License management should be integrated with the common Grid middle-
wares, e.g.,GT4 [35], glite [4], UNICORE [21]. Licenses and license management should be
built on standards instead of proprietary solutions.
Costs: The scalability of the Grid influences the costs using the existing license models. Models
like paying per-CPU, per-Seat, per-Job may quickly become expensive in Grid environments,
concurrent floating licenses across the Grid are also too expensive for the software users [31].
Moreover, even if the price can be agreed upon, some issues remain, e.g., how the license usage
will be audited and instrumented.
Support for workflows: With the adoption of web services, service oriented architectures and
BPEL, complex applications often are composed as workflows, which makes the license man-
agement more difficult. For instance, when executing a workflow, different applications may be
used in different phases of the workflow. How to retrieve and reserve the right licenses for the
applications in advance is one of the issues that need to be addressed.
Support for virtualization: Licenses and license management for environments with virtu-
alised resources or based on multicore technology is required.
Software is a service: SaaS and on demand use as well as the utility pricing mechanisms should
be considered both for the license models and license management in Grid environments.

Considering the requirements for Grid environments, according to the 451
report [31], most of the enterprises want to have more flexible license models
from the ISVs. It will be a great advantage for the enterprise if the licenses
can be dynamically moved and managed in the global Grid. E.g., the EDA
software licenses are bounded to some specific CPUs, machines today, while
the enterprises hope that the ISVs of EDA software will support the Grid-wide
licenses models so that the companies can run the software anywhere. However,
the EDA vendors are reluctant to do so until today. Some major pharmaceutical
ISVs also do not want to change their ways of licensing softwares. On the other
hand, pharmaceutical companies may immediately benefit from using Grid
resources to increase ther computational power since many of the applications
of the pharmaceutical sector are embarrassingly parallel and well suited for
distributed environments with only best-effort network connectivity.

Towards SLA-based Software Licenses 147

Figure 1: Basic approach of the BEinGRID project.

4.2 SLA-based Licenses and License Management

Recent R&D in two European projects [2, 18] shows that most of the require-
ments and challenges for licenses and license management in Grid computing
can be tackled using a SLA based approach. In the preparatory process of defin-
ing the policies for software usage, which are governed by individual SLAs later,
the polices and conflicts between the software vendors and the software users
can be observed and reconciled. Negotiation is the preferred approach to create
the SLAs between the license server and the user or the software entity acting
on behalf of the user. These negotiation processes should be automatically ex-
ecuted based on a job description using JSDL and license description language
(LDL) considering the large scale of the transactions and the scalability of the
Grid infrastructures [33, 36]. WS-Agreement [30] and WS-Negotiation [22] are
considered as the best suited existing or evolving negotiation protocols to create
the SLAs between the respective resource management systems, license man-
agement systems and the end users [37]. The definition of the term language
used to represent and manage the licenses is currently under definition in the
SmartLM project. The Job Submission Description Language [7] is already
used in agreements as a term language for computational resources. The LDL
describing license requirements is defined as an extension of JSDL. Such LDL
includes terms like life time of the license agreement, hardware environment
the license might be used in, software features available through the license,

148 COREGRID SYMPOSIUM

license model and pricing model, compensation policies if the agreement is not
fulfilled.

4.3 Current Approaches to SLA-based License
Management

On a European level currently two projects funded by the European Com-
mission are addressing license issues in the Grid

• the BEinGRID project (Business Experiments in GRID) deals with li-
censes issues through a dedicated horizontal activity in one of its service
clusters

• the SmartLM project that is in total focussing on a general solution for
Grid-frienly software licensing for location independent application ex-
ecution.

BEinGRID. Figure 1 shows the initial basic idea of the solution implemented
in BEinGRID [1]. A meta-scheduling service (MSS) [39] is responsible for the
negotiation of reservations of computational services and license services. A
local license resource management system is in charge of supporting flexible
license models and polices. This component also supports the reservation of
licenses for later use and allows queries about reservations made and current
license usage. The adapter will connects to the local license resource manage-
ment system implementing the API of the system on one end while supporting
the WS-Agreement based negotiation with the MSS. Thus the MSS is able to
negotiate agreements for the reservation of the required compute services and
the appropriate license required for the execution of the protected application.

Other than the SmartLM solution, BEinGRID is targeting on enabling use of
existing license technologies for Grids without addressing new license mecha-
nisms or new business models. The approach is based on a proxy solution that
transparently tunnels the communication between the remotely executed appli-
cation and the FLEXnet server while at the same time making the FLEXnet
server believe that it is talking to an application running locally. The current
BEinGRID implementations differs from the initial approach since the MSS is
not used for the negotiation of the co-allocation bit the co-allocation is done
manually by the user. However, the BEinGRID implementation provides ad-
ditional services like improved security features, accounting and interfaces for
billing. In addition to UNICORE and Globus Toolkit 4 the BEinGRID solution
also supports the GRIA middleware environment.

SmartLM. In contrast to BEinGRID, SmartLM [18] is focussing on develop-
ing both licensing technology suitable for the use in distributed environments
like Grid and - together with ISVs - new business models for the use of licensed

Towards SLA-based Software Licenses 149

Grid Access Point

submit

Grid
Resouces

Accounting
Service

Billing
Service

Grid
Resouces

Grid
Resouces

SmartLM enabled
Application
and License

License
Service

Orchestration
Service

Acquire License

SmartLM´s distributed architecture

Figure 2: Basic approach of the SmartLM project.

software in Grid or SOA environments. These new business models are also
relevant for environments where application service provides start delivering
their compute resources to their customers through virtualisation. Similar, the
growing number of clouds where service providers offer a completely virtu-
alised computation environment may benefit from the developments since the
classic license mechanisms and the related business models will not work any-
more. The project starts with adapting codes of the three participating ISVs;
ANSYS, INTES and LMS. In the second phase the project aims to attract other
ISVs through its extensive dissemination and marketing activities.

Figure 2 depicts the general idea of the SmartLM solution. A grid scheduler
(MSS) is retrieving the Grid resources required by the user as described in
his job. Once the appropriate resources have been identified, the local license
service managing all licenses of a site is contacted to negotiate a SLA for the
remote use of a license protected application. If both the requested compute
resources and the license(s) are available they are reserved for the use by the
requesting user. Like in the BEinGRID approach, a local license resource
management system is in charge of the reservation of the licenses.

As said before, SmartLM is devoted to implement existing or evolving stan-
dards thus WS-Agreement is used for the creation of the SLAs and the project
is contributing to the current work in the GRAAP-WG of the OGF on WS-
Agreement-Negotiation. The resulting SLA is defining the terms of the appli-
cation usage based on the local policies and the privileges of the user. This
SLA is then bundled by the orchestration service with the SLA for accessing
the remote resources and transferred to the remote site where the job is exe-

150 COREGRID SYMPOSIUM

cuted. Since no communication is required between application and license
server at run-time and the license SLA is created at the site of the user firewalls
do not cause a problem. Moreover, the application may be migrated to another
machine if the license SLA is migrated as well.

The application may run without any internet connection to the license server
during run-time. However, if there is - at least temporarily - a connection to
the site hosting the license server additional functionality of the new license
mechanisms may be used, e.g. re-negotiation of the period the license is valid
in case the application needs more time than foreseen by the user. Or, freeing
a license that is no longer needed.

5. Conclusion

Software licensing and pricing is an important problem to be solved for
a better acceptance of Grid infrastructures in productive environments with
commercial applications. We present the state of art of software licensing and
typical licensing and business and pricing models for managing software are
analyzed. Further we identify requirements and challenges for using license
protected software in the Grid. Ongoing work in two European projects aiming
to overcome the limitations of existing license mechanisms in the Grid has been
presented. The approach implemented in the BEinGRID project will become
available in spring 2008 through the projects Gridipedia site. A prototype of
the SmartLM solution including both new business models and the enabling
technology for distributed environments will be available begin of 2009.

6. Acknowledgment

This paper includes work carried out jointly within the CoreGRID Network
of Excellence funded by the European Commission’s IST programme under
grant #004265.

References

[1] BEinGRID Open Source Grid Software Repository.
http://www.gridipedia.eu/index.php?id=702.

[2] BEinGRID Project. http://www.beingrid.eu, 2008.02.

[3] Centralized Enterprise Licensing User Group. http://www.celug.com/, 2008.01.

[4] Egee glite project. http://glite.web.cern.ch/glite/, 2008.02.

[5] Gartner’s top 10 IT predictions. http://www.pcwelt.de/it-
profi/englishnews/Hardware/145606/.

[6] IBM License Management. http://www-306.ibm.com/software/awdtools/lum/sys-
requirements.html, 2007.06.

[7] Job Submission Description Language WG (JSDL-WG).
http://www.ogf.org/gf/group info/view.php?group=jsdl-wg, 2007.3.

Towards SLA-based Software Licenses 151

[8] Key Trends In Software Pricing and Licensing (2006-07).
http://www.softsummit.com/softsummit knowledge library industry reports.shtml.

[9] License Asset Manager. http://www.teameda.com/licenseassetmanager.html, 2008.02.

[10] Macrovison WebSite. http://www.macrovision.com/.

[11] NetSuite Software. http://www.netsuite.com/portal/home.shtml.

[12] Open iT License Management Software. http://www.openit.com/, 2008.01.

[13] Platform LSF License Scheduler. http://www.platform.com/Products/Platform.LSF.
Family/Platform.LSF.License.Scheduler/, 2007.06.

[14] Reprise License Manager (RLM). http://www.reprisesoftware.com/rlm.htm, 2008.01.

[15] Salesforce SaaS CRM Software. http://www.salesforce.com/de/, 2008.02.

[16] Sentinel RMS. http://www.safenet-inc.com/products/sentinel/software protection.asp,
2008.02.

[17] Service Oriented Architecture. http://en.wikipedia.org/wiki/Service-
oriented architecture, 2008.02.

[18] SmartLM project web pages. http://www.smartlm.eu, 2008.02.

[19] Softsummit Conference. http://www.softsummit.com/index.shtml, 02.2008.

[20] The license tracker. http://www.licensetracker.ca/index.htm, 2008.01.

[21] Unicore Open Source. http://www.unicore.org, 2008.02.

[22] Web Services Agreement Negotiation Specification.
http://www.ogf.org/gf/group info/view.php?-group=graap-wg, 2006.11.

[23] Flexnet Licensing 11.4 Programming and Preference Guide for Trusted Storage-Based
Licensing. Macrovision, 2006.

[24] Flexnet Licensing End User Guide. Macrovision, 2006. Product Version 11.4, Document
Revision 01.

[25] Flexnet Licensing for Java Programming Guide. Macrovision, 2006. Product Version
11.4, Document Revision 01.

[26] Flexnet Licensing Programming and Reference Guide for License File-Based Licensing.
Macrovision, 2006.

[27] Getting StartedWith the Licensing Toolkit for License File-based Licensing. Macrovision,
2006. Product Version 11.4, Document Revision 01.

[28] iFOR/LS Quick Start Guide. HP, 2006. HP Part No, B2355-90108, June 1996.

[29] Oracle software investment guide. Technical report, Oracel Corporation, 2007.
http://www.oracle.com/corporate/pricing/sig.pdf.

[30] Web Services Agreement Specification, 03 2007.
http://www.ogf.org/gf/group info/view.php?group=graap-wg.

[31] Grid computing - the impact of software licensing. Technical report, The 451 Group,
March, 2005.

[32] Vidyanand Choudhary. Software as a service: Implications for investment in software
development. hicss, 0:209a, 2007.

[33] K. Czajkowski, I. Foster, and C. Kesselman. Agreement-based resource management.
Proceedings of the IEEE, 93(3):631–643, 03 2005.

152 COREGRID SYMPOSIUM

[34] Xiaoshe Dong, Yinfeng Wang, Fang Zheng, Zhongsheng Qin, Hua Guo, and Guofu Feng.
Key techniques of software sharing for on demand service-oriented computing. In Yeh-
Ching Chung and José E. Moreira, editors, GPC, volume 3947 of Lecture Notes in Com-
puter Science, pages 557–566. Springer, 2006.

[35] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. The In-
ternational Journal of Supercomputer Applications and High Performance Computing,
11(2):115–128, 1997.

[36] J. Li. Strategic Negotiation Models for Grid Scheduling. PhD thesis, Universität Dort-
mund, Informationstechnik, 2007.

[37] Jan Seidel, Oliver Wäldrich, Philipp Wieder, Ramin Yahyapour, and Wolfgang Ziegler.
Using sla for resource management and scheduling - a survey. In Domenico Thalia, Ramin
Yahyapour, and Wolfgang Ziegler, editors, Grid Middleware and Services - Challenges
and Solutions, volume 8 of CoreGRID Series. Springer, 2008.

[38] Erin Traudt and Amy Konary. Software as a service taxonomy and research guide. Tech-
nical report, IDC, 06 2005.

[39] Oliver Wäldrich, Philipp Wieder, and Wolfgang Ziegler. A meta-scheduling service for co-
allocating arbitrary types of resources. In Roman Wyrzykowski, Jack Dongarra, Norbert
Meyer, and Jerzy Wasniewski, editors, PPAM, volume 3911 of Lecture Notes in Computer
Science, pages 782–791. Springer, 2005.

USING SLA BASED APPROACH TO HANDLE
SABOTAGE TOLERANCE IN THE GRIDS

Syed Naqvi, Stephane Mouton, Philippe Massonet
Centre of Excellence in Information and Communication Technologies, Belgium

{syed.naqvi, stephane.mouton, philippe.massonet}@cetic.be

Gheorghe Cosmin Silaghi
Babes. -Bolyai University of Cluj-Napoca, Romania

gheorghe.silaghi@econ.ubbcluj.ro

Dominic Battré and Matthias Hovestadt
Technische Universität Berlin, Germany

dominic.battre@tu-berlin.de

maho@cs.tu-berlin.de

Karim Djemame
University of Leeds, United Kingdom

karim@comp.leeds.ac.uk

Abstract This work explores the potential of employing service level agreements to make
grids sabotage tolerant. The complex nature of the grid requires comprehen-
sive security and trust solutions that can encompass different aspects of their
operational environments. In this paper, we argue that the use of service level
agreement (SLA) based exchange of information (negotiations of SLA contracts)
can enhance the efficiency of the grid security architecture by providing a sabo-
tage tolerant system design. The use of an SLA-based approach covers nearly the
entire spectrum of the grid applications and grid based systems, where sabotage
tolerance is an essential requirement, especially in the case when the grid spans
the organizational border, moving under the collaborative control of potential
competing stakeholders.

Keywords: Grid Computing, Sabotage Tolerance, Service Level Agreement (SLA), Security
Negotiations, Trust parameters

154 COREGRID SYMPOSIUM

1. Introduction

A range of new security threats and vulnerabilities are coming to the fore
with the broadening scope of grid computing [5]. Introduction of grids in the
commercial sector has open up new ventures in the business arena [4]. How-
ever, unlike the pioneer grid applications of the particle physics domain, the
contemporary grid application domains require many protections from mali-
cious entities. These applications and their underlying infrastructure have to
protect the critical information about its stakeholders; provide safeguards to the
economic interests of the enterprises using it; and win the confidence of the
society which is already skeptical of the digital data processing [8].

In this work, we present the cohesion of two important areas of security as-
surances in contemporary grid security solutions. They are Sabotage Tolerance
and Service Level Agreements (SLA). We explore the potential of employ-
ing service level agreements to make the grids sabotage tolerant. We have
considered several scenarios for the sabotage tolerance techniques particularly
the Desktop Grids. We have identified the areas of sabotage tolerance where
SLA(s) can leverage the overall efficiency of the security architecture.

This paper is organized as follows: Section 2 provides an overview of the
sabotage tolerance techniques in the grids. The use of service level agreements
is elaborated in section 3. In section 4, we present our vision of employing
SLA based approach for sabotage tolerance. We give a concise description of
our future directions in section 5. Finally the paper is concluded in section 6.

2. Sabotage Tolerance in Grids

Sabotage tolerance is gaining importance in grid environments notably in
the situation where different grid domains have conflicting interests. The term
sabotage tolerance was originally coined in the specific area of Desktop Grids,
where voluntarily Internet users contribute to the grid with computing cycles.
Because everyone can take part in such a grid, the environment started loosing
its trustworthiness. Since computations run in an open and un-trustable envi-
ronment, it is necessary to protect the integrity of data and validate the compu-
tation results. Sabotage tolerance techniques need to be employed mainly for
the detection of malicious users who may submit erroneous results.

In a classical grid, sabotage tolerance is not an issue because the grid environ-
ment is trustable, in the sense that someone controls strictly the grid resources
and their ownership. When a grid resource is malfunctioning, the grid owner is
notified who has necessary tools to resurrect it. However, if the grid scales at
the size of Internet or spans over multiple administrative domains without a hi-
erarchical subordination of control and ownership, sabotage tolerance becomes
mandatory, for the protection of both the grid users and other grid contributors.

Using SLA based Approach to handle Sabotage Tolerance in the Grids 155

Sabotage tolerance techniques are applied in grid systems that employ the
master-worker computational model [16]. This grid model is not restrictive
and maps well on the wide variety of grids. This model can be summarised
as a server (referred further as the master) that distributes work units of an
application to grid nodes (workers). A result error is any result returned by a
worker that is not the correct value or within the correct range of values [10].
Sabotage-tolerance techniques imply detecting result errors, which are very
important as they can undermine long computations that have been executing
during weeks or even months by several workers [6]. The error rate ε is defined
as the ratio of bad results or errors among the final results accepted at the end of
the computation. Thus, for a batch of N work units with error rate ε, the master
expects to receive εN errors. For every application, the master employs some
sabotage-tolerance mechanism for obtaining an acceptable error rate εacc with
regard to its application. If a grid user comes with an application divided on
a big number of tasks (e.g. 10 batches of 100 work units each) and it requires
a global error rate of 10−2, the sabotage tolerance technique should provide
with a work unit error rate of about 10−5 [10]. Many applications, especially
the ones from computational biology and physics require bounds on the error
rates, as the correctness of the computed results is essential for making accurate
scientific conclusions.

Sabotage tolerance techniques for Desktop Grids can be classified in three
big classes [6]: replication with voting, sampling and checkpoint-based verifi-
cation. Here, we provide a short overview for the principal sabotage tolerance
techniques in Desktop Grids. The reader may refer to [6] for a more detailed
discussion.

Replication with majority voting [16] is widely used in the BOINC Desktop
Grid platform [1]. The master distributes 2m − 1 replicas of a workunit to
workers and when it collects m similar results, it accepts that result as being the
correct one. Each collected result is seen as a vote in a voting pool with 2m−1
voters and with majority agreement being the decision criteria. The error rate
of this method is determined by the number of identical results required (m),
which is a measure of redundancy. High levels of redundancy provide very low
error rates (less than 10−5). The main benefit of the method is its simplicity,
while the big drawback is the fact that it wastes a lot of resources.

Sampling-based techniques are developed to overcome limitations of repli-
cation, especially redundancy. Within sampling, the master determines the
trustworthiness of the workers by verifying them only on a few samples of their
results. The basic sampling is the naı̈ve one [7], where the master sends probes
with verifiable results to workers. If workers respond well to the probes, they are
considered trustworthy. The main drawback is the workers can easily recognize
the probes and respond well to them, while cheating on the ordinary workunits.
Quizzes [20] are an improvement to basic probing. With this method, the mas-

156 COREGRID SYMPOSIUM

ter sends to workers batches with workunits and it places the probes inside of
those batches. Given the actual required error rate, the master can compute the
number of quizzes to place inside a batch. A drawback of probing is the fact
the master should possess some heuristic in order to generate the probes and
make them to resemble with the real workunits. Because this is a difficult task,
the master can use actual workunits as probes [16]. The master verifies (using
replication) only a sample of results and if a worker is caught cheating all its
previous results are invalidated.

Checkpoint based verification addresses the problems with sequential com-
putations that can be broken in multiple temporal segments (St1 , St2 , . . . , Stn).
At the end of each segment a checkpoint is submitted to a stable storage. The
checkpoints are stored locally to allow recovering the long tasks from faults.
After finishing a task, the worker sends back the result along with a list of
hashes for the checkpoints. In the basic checkpoint verification [12], the master
randomly selects a checkpoint time Sti for a task and asks the worker to deliver
its local checkpoint C(Sti). Then the master computes the task from Sti up
to the next checkpoint and compares the results with the hash value submitted
by the worker for C(Sti+1). If the hash verification succeeds, then the worker
passed the verification. In the distributed version of the checkpoint verification,
the master selects a third worker for verification purposes and let the verifier to
compute the checkpoint verification. The distributed version has the advantage
of not overloading the master with a lot of verification tasks. The error rate
of this method strongly depends on the number of verified checkpoints - i.e. a
high percentage of verified checkpoints yield a low error rate, for the cost of
increased computation (redundancy) and bandwidth.

3. Use of Service Level Agreements

Service Level Agreements (SLAs) form a contract between two parties. WS-
Agreement [3] defines the roles "agreement initiator" and "agreement respon-
der" to distinguish the parties participating in the agreement where each role
can be filled by individuals or organizations. This assignment strongly focuses
on the technical way of addressing the parties of an SLA. In real life, the two
parties included in an SLA usually are service provider and service consumer,
e.g. a resource provider operating high performance compute resources and a
end-user who wants to use these resources for the computation of his job.

Even if such a provider usually plays the service provider role in such an
SLA contract, he is not fixed in that. If he uses the Grid environment for
migrating local jobs to other resource providers, this provider plays the service
consumer role, requesting the Grid for suitable Grid resources. The same holds
valid for the role of a Grid broker. Such a broker service is acting as a service
intermediate between the service consumer and the service provider. Hence,

Using SLA based Approach to handle Sabotage Tolerance in the Grids 157

there are two SLAs negotiated: one between the end-user and the broker, and
one between the broker and the resource provider.

As SLAs have a legal character, it is important that the negotiating parties
authenticate themselves during the negotiation phase and sign all messages to
be sent. This ensures that nobody can pretend to be somebody else (i.e. agree a
contract on behalf of somebody else) and that nobody can claim to have received
a different message (i.e. claim in the case of a dispute that something different
was agreed). Both aspects are crucial for sabotage tolerance in Grids. WS-
SecureConversation [2] and SAML [9] provide means for authentication and
signing messages. If only authenticated users can negotiate SLAs this provides
a very important step for sabotage tolerance.

The body of an agreement defines the terms that the parties agree upon. This
comprises functional and non-functional terms, rewards for compliance, and
penalties for violations. First of all, the service to be delivered needs to be
described. Then guarantees about the quality of service are specified. These
guarantees can be either invariant or conditional to something; e.g. during
weekends other guarantees might be given than during weekdays. Guarantees
need to be monitorable and a penalty and reward is attached to each guarantee
for violation or compliance. These can range from monetary payments to
being pilloried. WS-Agreement provides a framework for the description of
such SLAs. While WS-Agreement sets the framework, the actual description
of the service and guarantees are domain specific. WS-Agreement defines a
very simple protocol to establish agreements. More sophisticated negotiation
protocols [11] can precede this request/reply protocol that allows to actually
negotiate on the price or other features of the agreement.

The SLA-negotiation is the first step in the lifecycle of SLA-bound jobs.
Here, service customer and service provider agree on the terms of the SLA, i.e.
all obligations and expectations within the business relationship. Thanks to this
negotiation, to use flat security profiles is no longer mandatory. In such a flat
profile the provider defines his internal security policies, defining the handling
of all incoming user jobs. Usually, this profile is not communicated to the
outside world, so that the user has no knowledge about the technical details.
It underlines the asymmetry in security management in classical systems: the
customer has to trust the resource while the resource distrusts the customer job.

SLA negotiations provide means to describe terms of the security policy to
be applied. In a provider driven market it is the provider who describes internal
security policies at this place. In a customer driven market it is the customer
who demands from the provider that a specific set of security policies has to be
enforced.

The agreement partner evaluates these policies comply vis-a-vis his secu-
rity requirements. If, for example, the provider allows negotiation on security
aspects, the customer can define his own requirements, e.g. the establishment

158 COREGRID SYMPOSIUM

of micro-firewalls for isolating the used compute resources from the outside
world, or the application of active sabotage tolerance mechanisms. SLA de-
ployment requires incentives that have to be awarded to the provider for his
participation and the installation of appropriate security and sabotage tolerance
mechanisms. A major incentive is the access to specific user communities i.e.
closed communities with strong financial background or high reputation for the
provider. Similar incentives already drive companies to apply for certifications
like ISO9001.

Fault tolerance mechanisms are mandatory for providers to provide SLA-
compliant services. Such mechanisms have been developed in the EC-funded
projects AssessGrid [13] and HPC4U [14]. Planning based SLA-aware re-
source management and periodic checkpointing of running applications are
major building blocks of these fault tolerance mechanisms. A job is check-
pointed in periodic intervals and therefore a resource provider can take a check-
point of a running application, redundantly resuming its execution on other
resources. The provider can either execute both applications until their end,
then comparing their results, or to execute until the next checkpoint has to be
generated, then comparing the checkpoints (cf. section 2). If the result of orig-
inal job and redundantly executed job differ, this is a clear indication that one
of his resources may be sabotaged, e.g. by viruses or rootkits.

Planning based resource management is predestined to support this sabotage
tolerance since knowledge is available about both present and future resource
usage. New scheduling strategies have to be developed, e.g. using external
waste for executing redundant execution, minimizing the impact on the overall
machine and ensuring the SLA-compliant execution of all other jobs despite of
the overhead caused by redundant execution.

The project AssessGrid introduced the concept of a confidence service at
the grid broker level. This element realizes reputation management, using
the knowledge available at broker level about the performance of providers to
evaluate the probability of failure in SLA offerings. This estimate enables the
users to rate the offering in the light of provider’s reputation rather than blindly
trust him [17]. Knowledge of sabotage at provider level can be obtained by a
broker by executing a specific percentage of all jobs in a redundant manner, then
comparing the results of both jobs. Since the provider himself does not know
if the broker executed a specific job redundantly or not, he generally runs in
danger if sabotaging a given job. If the broker detects sabotage of the provider,
he logs this in its internal experience databases, informing future users about
potential sabotage problems. Hence, on the long term a sabotage provider can
be identified by the confidence service, dissuading users from selecting this
provider.

Using SLA based Approach to handle Sabotage Tolerance in the Grids 159

4. Perspectives of Using SLA based Approach for
Sabotage Tolerance

Service level agreement (SLA) is emerging as an effective and standard way
of negotiating a contract among the collaborating parties. SLA has the potential
of providing adequate support for the various sabotage tolerance methodolo-
gies presented in this paper. Significance of sabotage tolerance techniques in
Desktop Grids in particular is highlighted in the section 2. In this section, we
argue that the use of SLA based exchange of information (negotiations of SLA
contracts) can enhance the grid with efficiency provided by a sabotage tolerant
system design.

The use of SLA based approach covers nearly the entire spectrum of the grid
applications and grid based systems, where sabotage tolerance is an essential
requirement, especially in the case when the grid spans the organizational bor-
der, moving the grid under the collaborative control of (possible) competing
stakeholders. In this section we explore the sabotage tolerance support for a
virtual organizations enhanced operating system.

4.1 Operating System Support for Virtual Organizations

Virtual Organizations (VOs) are the sum and substance of Grid technology.
They facilitate dynamic collaborations through sharing of computing and stor-
age resources. There are several different ways of defining support for the
creation, functioning, and conclusion of VOs such as resource management,
security and trust issues, etc. These supports are traditionally managed by the
middleware services. Middleware consist of tools and services that coordinate
between the applications and the operating system. In the recent past, the Eu-
ropean Commission funded a project, called XtreemOS, for the development
of Linux-based operating system to support virtual organizations for the next
generation Grids [15].

XtreemOS is meant to provide native support for the virtual organizations.
The challenges for this quest of the project include interoperability with diverse
VO frameworks and security models [19]. Besides the scope of the XtreemOS
security concerns, there are implications of reputation-based trust system on
several components of the XtreemOS architecture [18], as a method to mitigate
the uncertainty over the entities’ behavior. This approach stipulates that an
incentive-based mechanism be designed to make entities aware about their role
in the VO and to facilitate the participation of entities to the social network by
providing feedback for third parties. The incentive mechanism includes both
rewards and penalties. Rewards are for the entities that delivered the agreed
quality of service (QoS) for a contract; penalties for the ones that failed to
deliver the agreed QoS.

160 COREGRID SYMPOSIUM

With an incentive-based approach, the reputation management system can
be seen as a method for sabotage tolerance in the operating system for grids.
The dynamicity of the SLA contracts (starting and closing of the contracts with
the negotiation parameters) can leverage the QoS of a grid operating system
and make it sabotage tolerant.

4.2 Adapting SLAs for sabotage tolerance support in grid
resource management

But, even in virtual organizations, reputation lists are not enough to deci-
sively enhance sabotage tolerance. A common attack against the reputation
mechanisms is the one when an individual behaves well for a long period of
time, especially fulfilling low value transactions, and, when a high value impor-
tant transaction comes to the execution; the individual cheats and go away after.
In such a case, sabotage tolerance techniques selected from the one presented
in section 2 are mandatory.

SLAs become important when some grid entity takes the role of broker-
ing between the user requests and resource providers. This brokering role can
happen in strong structured grids, with long-lasting VOs inside the VO bound-
aries or can happen in volatile grid environments, with very dynamic VOs, that
changes their very often competence and that can appear and disappear with
high probability. In this second scenario, which is very close with the grid
design adopted by the XtreemOS project [19], we consider that is mandatory
for VO manager to use sabotage tolerance techniques in order to assure the soft
security protection of the user.

If the user is able to define its acceptable error rate and the reward it will pay
for having the job done, then, including the error rate besides the rewards in
the SLA will allow the VO manager (i) to select proper entities as part of the
VO, based on the existing reputation lists and (ii) to select a proper sabotage
tolerance method. We should notice from section 2 that a sabotage tolerance
method usually produces smaller error rates with higher computational costs,
measured in terms of redundancy. Therefore, given the requested error rate and
reward the customer is willing to pay, the VO manager can select one sabotage
tolerance technique and assess its associated costs. Therefore, the VO manager
can further negotiate with the customer a bigger reward or a higher error rate,
if the previous ones can not be accomplished within the newly formed VO with
a sabotage tolerance technique.

5. Future Directions

This work explores the potential of fostering logical interactions between
two important areas of grid computing sabotage tolerance and the formulation
of standard contracts among the participating parties. The composite security

Using SLA based Approach to handle Sabotage Tolerance in the Grids 161

model is meant to tap the potential of SLA to assure sabotage tolerance in the
grid environments (applications as well as systems). We plan to add new fields
in the existing WS-Agreement based SLA contracts so that sabotage tolerant
systems can be developed. As performance factors are very crucial in the
deployment of highly scalable and dynamic environments like grids, we plan to
carryout a comprehensive performance analysis of the proposed SLA extension
to validate the design.

This work brings together the researchers from two European funded projects
CoreGRID and AssessGrid. The former project has developed expertises in
the domain of sabotage tolerance techniques; whereas the later has developed
expertises in the domain of risks management and service level agreements. We
aim to harness these competencies to assure the sustainability of the excellences
developed under the umbrella of these projects.

6. Conclusions

In this paper, we identified the use of service level agreement (SLA) to han-
dle the sabotage tolerance in the grids. SLA provides a standard mechanism
of exchanging contracts and facilitates negotiations among the potential col-
laborating entities. We are using this standardised way of negotiations in the
sabotage tolerance techniques where specific information is exchanged to de-
termine whether or not an attacker was successful in jeopardising the integrity
of the grid resources.

This work provides an opportunity to the researchers of these ostensibly
different areas to work together and bring forward practical results by imple-
menting the SLA based negotiations techniques for the sabotage tolerance.
This initiative will also bring the researchers of Grid based operating system
(XtreemOS) to contribute for the implementation of the SLA based grid re-
source management scenario.

Acknowledgments

This research work is supported by: the European Network of Excellence
CoreGRID (project number 004265), the European Specific Targeted Project
AssessGrid (project number 031772) and the Romanian Authority for Scientific
Research (project code IDEI 573).

References

[1] David P. Anderson. Boinc: A system for public-resource computing and storage. In
GRID ’04: The Fifth IEEE/ACM International Workshop on Grid Computing, pages 4–
10, Washington, DC, USA, 2004. IEEE Computer Society.

[2] Steve Anderson et al. Web services secure conversation language (WS-
SecureConversation), September, 2005.

162 COREGRID SYMPOSIUM

[3] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,
S. Tuecke, and Ming Xu. Web services agreement specification (WS-Agreement), Septem-
ber 20, 2005.

[4] Commercial grid solutions. Grid Computing Planet, December 18, 2006. available at
http://www.gridcomputingplanet.com/resources/article.php/933781.

[5] Y. Demchenko, L. Gommans, C. de Laat, and B. Oudenaarde. Web services and grid
security vulnerabilities and threats analysis and model. In GRID ’05: The 6th IEEE/ACM
International Workshop on Grid Computing, pages 262–267, Washington, DC, USA,
2005. IEEE Computer Society.

[6] P. Domingues, B. Sousa, and L.M. Silva. Sabotage-tolerance and trust management in
Desktop Grid computing. Future Gener. Comput. Syst., 23(7):904–912, 2007.

[7] Wenliang Du, Jing Jia, M. Mangal, and M. Murugesan. Uncheatable grid computing.
In ICDCS ’04: The 24th International Conference on Distributed Computing Systems
(ICDCS’04), pages 4–11, Washington, DC, USA, 2004. IEEE Computer Society.

[8] J. Ermisch and D. Gambetta. People’s trust: The design of a survey-based experiment.
IZA Discussion Papers 2216, Institute for the Study of Labor (IZA), 2006. available at
http://ideas.repec.org/p/iza/izadps/dp2216.html.

[9] J. Hughes et al. Technical overview of the oasis security assertion markup language
(SAML), v1.1. OASIS, May, 2004.

[10] D. Kondo, F. Araujo, P. Malecot, P. Domingues, L.M. Silva, G. Fedak, and F. Cappello.
Characterizing result errors in Internet Desktop Grids. In Euro-Par 2007, 13th Interna-
tional Euro-Par Conference on Parallel Processing, Rennes, France, 2007, vol. 4641 of
LNCS, pages 361–371. Springer.

[11] J. Li, R. Yahyapour. Negotiation strategies for grid scheduling. In 1st International
Conference on Grid and Pervasive Computing, 2006, vol. 3947 of LNCS. Springer.

[12] F. Monrose, P. Wyckoff, and A.D. Rubin. Distributed execution with remote audit. In The
Network and Distributed System Security Symposium, NDSS 1999, San Diego, California,
USA. The Internet Society.

[13] Project ASSESSGRID. http://www.assessgrid.eu.

[14] Project HPC4U. http://www.hpc4u.org.

[15] Project XtreemOS. http://www.xtreemos.eu.

[16] Luis F. G. Sarmenta. Sabotage-tolerance mechanisms for volunteer computing systems.
Future Gener. Comput. Syst., 18(4):561–572, 2002.

[17] K. Tserpes, D. Kyriazisa, A. Menychtasa and T. Varvarigoua. A novel mechanism for pro-
visioning of high-level quality of service information in grid environments. In European
Journal of Operational Research, Article in press, Corrected proof, 2007, Elsevier

[18] XtreemOS. First draft specification of security services, project deliver-
able D3.5.3. http://www.xtreemos.eu/publications/project-deliverables/d3-5-3-
firstspecofsecurityservices vfinal.pdf, 2007.

[19] E.Y. Yang, B. Matthews, A. Lakhani, Y. Jégou et. al. Virtual organization management
in XtreemOS: an overview. In Towards Next Generation Grids, Proc. of the CoreGRID
Symposium, Rennes, France, 2007. Springer.

[20] S. Zhao, V. Lo, and C. GauthierDickey. Result verification and trust-based scheduling
in peer-to-peer grids. In P2P ’05: The 5th IEEE International Conference on Peer-to-
Peer Computing (P2P’05), pages 31–38, Washington, DC, USA, 2005. IEEE Computer
Society.

ENABLING SELF-MANAGEMENT OF
COMPONENT BASED DISTRIBUTED
APPLICATIONS ∗

Ahmad Al-Shishtawy,1 Joel Höglund,2 Konstantin Popov,2

Nikos Parlavantzas,3 Vladimir Vlassov,1 and Per Brand2

1Royal Institute of Technology (KTH), Stockholm, Sweden

{ahmadas,vladv}@kth.se

2Swedish Institute of Computer Science (SICS), Stockholm, Sweden

{kost,joel,perbrand}@sics.se

3INRIA, Grenoble, France

nikolaos.parlavantzas@inria.fr

Abstract Deploying and managing distributed applications in dynamic Grid environments
requires a high degree of autonomous management. Programming autonomous
management in turn requires programming environment support and higher level
abstractions to become feasible. We present a framework for programming self-
managing component-based distributed applications. The framework enables
the separation of application’s functional and non-functional (self-*) parts. The
framework extends the Fractal component model by the component group ab-
straction and one-to-any and one-to-all bindings between components and groups.
The framework supports a network-transparent view of system architecture sim-
plifying designing application self-* code. The framework provides a concise
and expressive API for self-* code. The implementation of the framework relies
on scalability and robustness of the Niche structured p2p overlay network. We
have also developed a distributed file storage service to illustrate and evaluate
our framework.

Keywords: self-management, autonomic computing, component-based applications, P2P,
Grid

∗This research is supported by the FP6 Project Grid4All funded by the European Commission (Contract
IST-2006-034567) and by the FP6 Network of Excellence CoreGRID funded by the European Commission
(Contract IST-2002-004265).

164 COREGRID SYMPOSIUM

1. Introduction

Deployment and run-time management of applications constitute a large
part of software’s total cost of ownership. These costs increase dramatically
for distributed applications that are deployed in dynamic environments such as
unreliable networks aggregating heterogeneous, poorly managed resources.

The autonomic computing initiative [11] advocates self-configuring, self-
healing, self-optimizing and self-protecting (self-* thereafter) systems as a way
to reduce the management costs of such applications. Architecture-based self-*
management [10] of component-based applications [5] have been shown useful
for self-repair of applications running on clusters [3].

We present a design of a component management platform supporting self-*
applications for community-based Grids, and illustrate it with an application.
Community-based Grids are envisioned tofill the gap between high-quality Grid
environments deployed for large-scale scientific and business applications, and
existing peer-to-peer systems which are limited to a single application. Our
application, a storage service, is intentionally simple from the functional point
of view, but it can self-heal, self-configure and self-optimize itself.

Our framework separates application functional and self-* code. We provide
a programming model and a matching API for developing application-specific
self-* behaviours. The self-* code is organized as a network ofmanagement el-
ements (MEs) interacting through events. The self-* code senses changes in the
environment by means of events generated by the management platform or by
application specific sensors. The MEs can actuate changes in the architecture –
add, remove and reconfigure components and bindings between them. Appli-
cations using our framework rely on external resource management providing
discovery and allocation services.

Our framework supports an extension of the Fractal component model [5].
We introduce the concept of component groups and bindings to groups. This
results in “one-to-all” and “one-to-any” communication patterns, which support
scalable, fault-tolerant and self-healing applications [4]. For functional code, a
group of components acts as a single entity. Group membership management
is provided by the self-* code and is transparent to the functional code. With a
one-to-any binding, a component can communicate with a component randomly
chosen at run-time from a certain group. With a one-to-all binding, it will
communicate with all elements of the group. In either case, the content of the
group can change dynamically (e.g. because of churn) affecting neither the
source component nor other elements of the destination’s group.

The management platform is self-organizing and self-healing upon churn. It
is implemented on the Niche overlay network [4] providing for reliable com-
munication and lookup, and for sensing behaviours provided to self-* code.

Enabling self-management 165

Figure 1: Application Architecture. Figure 2: Ids and Handlers.

Our first contribution is a simple yet expressive self-* management frame-
work. The framework supports a network-transparent view of system architec-
ture, which simplifies reasoning about and designing application self-* code.
In particular, it facilitates migration of components and management elements
caused by resource churn. Our second contribution is the implementation model
for our churn-tolerant management platform that leverages the self-* properties
of a structured overlay network.

We do not aim at a general model for ensuring coherency and convergence
of distributed self-* management. We believe, however, that our framework
is general enough for arbitrary self-management control loops. Our example
application demonstrates also that these properties are attainable in practice.

2. The Management Framework

An application in the framework consists of a component-based implemen-
tation of the application’s functional specification (the lower part of Fig. 1),
and an implementation of the application’s self-* behaviors (the upper part).
The management platform provides for component deployment and communi-
cation, and supports sensing of component status.

Self-* code in our management framework consists ofmanagement elements
(MEs), which we subdivide into watchers (W1, W2 .. on Fig. 1), aggregators
(Aggr1) and managers (Mgr1), depending on their roles in the self-* code.
MEs are stateful entities that subscribe to and receive events from sensors and
other MEs. Sensors are either component-specific and developed by the pro-
grammer, or provided by the management framework itself such as component
failure sensors. MEs can manipulate the architecture using the management ac-
tuation API [3] implemented by the framework. The API provides in particular
functions to deploy and interconnect components.

Elements of the architecture – components, bindings, MEs, subscriptions,
etc. – are identified by unique identifiers (IDs). Information about an architec-

166 COREGRID SYMPOSIUM

Figure 3: Structure of MEs. Figure 4: Composition of MEs.

ture element is kept in a handle that is unique for the given ID, see Fig. 2. The
actuation API is defined in terms of IDs. IDs are introduced by DCMS API calls
that deploy components, construct bindings between components and subscrip-
tions between MEs. IDs are specified when operations are to be performed on
architecture elements, like deallocating a component. Handles are destroyed
(become invalid) as a side effect of destruction operation of their architecture
elements. Handles to architecture elements are implemented by sets of network
references described below. Within a ME, handles are represented by an object
that can cache information from the handle. On Fig. 2, handle object for id:3
used by the deploy actuation API call caches the location of id:3.

An ME consists of an application-specific component and an instance of the
generic proxy component, see Fig. 3. ME proxies provide for communication
between MEs, see Fig. 4, and enable the programmer to control the management
architecture transparently to individual MEs. Sensors have a similar two-part
structure.

The management framework enables the developer of self-* code to control
location of MEs. For every management element the developer can specify a
container where that element should reside. A container is a first-class entity
which sole purpose is to ensure that entities in the container reside on the same
physical node. This eliminates network communication latencies between co-
located MEs. The container’s location can be explicitly defined by a location
of a resource that is used to host elements of the architecture, thus eliminating
the communication latency and overhead between architecture elements and
managers handling them.

A Set of Network References, SNR [4], is a primitive data abstraction that is
used to associate a name with a set of references. SNRs are stored under their
names on the structured overlay network. SNR references are used to access
elements in the system and can be either direct or indirect. Direct references
contain the location of an entity, and indirect references refer to other SNRs
by names and need to be resolved before use. SNRs can be cached by clients
improving access time. The framework recognizes out-of-date references and
refreshes cache contents when needed.

Enabling self-management 167

Groups are implemented using SNRs containing multiple references. A
“one-to-any” or “one-to-all” binding to a group means that when a message is
sent through the binding, the group name is resolved to its SNR, and one or
more of the group references are used to send the message depending on the
type of the binding. SNRs also enable mobility of elements pointed to by the
references. MEs can move components between resources, and by updating
their references other elements can still find the components by name. A group
can grow or shrink transparently from group user point of view. Finally SNRs
are used to support sensing through associating watchers with SNRs. Adding
a watcher to an SNR will result in sensors being deployed for each element
associated with the SNR. Changing the references of an SNR will transparently
deploy/undeploy sensors for the corresponding elements.

SNRs can be replicated providing for reliable storage of application architec-
ture. The SRN replication provides eventual consistency of SNR replicas, but
transient inconsistencies are allowed. Similarly to handling of SNR caching,
the framework recognizes out-of-date SNR references and repeats SNR access
whenever necessary.

3. Implementation and evaluation

We have designed and developed YASS – “yet another storage service” – as a
way to refine the requirements of the management framework, to evaluate it and
to illustrate its functionality. Our application stores, reads and deletes files on a
set of distributed resources. The service replicatesfiles for the sake of robustness
and scalability. We target the service for dynamic Grid environments, where
resources can join, gracefully leave or fail at any time. YASS automatically
maintains the file replication factor upon resource churn, and scales itself based
on the load on the service.

3.1 Application functional design

A YASS instance consists out of front-end components which are deployed
on user machines and storage components Fig. 5. Storage components are
composed of file components representing files. The ovals in Fig. 5 represent
resources contributed to a Virtual Organization (VO). Some of the resources
are used to deploy storage components, shown as rectangles.

A user store request is sent to an arbitrary storage component (one-to-any
binding) that will find some r different storage components, where r is the file’s
replication degree, with enough free space to store a file replica. These replicas
together will form a file group containing the r dynamically created new file
components. The user will then use a one-to-all binding to send the file in
parallel to the r replicas in the file group. Read requests can be sent to any of

168 COREGRID SYMPOSIUM

Figure 5: YASS Functional Part

Figure 6: YASS Non-Functional Part

the r file components in the group using the one-to-any binding between the
front-end and the file group.

3.2 Application non-functional design

Configuration of application self-management. The Fig. 6 shows the archi-
tecture of the watchers, aggregators and managers used by the application.

Associated with the group of storage components is a system-wide Storage-
aggregator created at service deployment time, which is subscribed to leave-
and failure-events which involve any of the storage components. It is also
subscribed to a Load-watcher which triggers events in case of high system
load. The Storage-aggregator can trigger StorageAvailabilityChange-events,
which the Configuration-manager is subscribed to.

Enabling self-management 169

Figure 7: Parts of the YASS application deployed on the management infrastructure.

When new file-groups are formed by the functional part of the application,
the management infrastructure propagates group-creation events to the Create-
Group-manager which initiates a FileReplica-aggregator and a FileReplica-
manager for the new group. The new FileReplica-aggregator is subscribed to
resource leave- and resource fail-events of the resources associated with the
new file group.

3.3 Test-cases and initial evaluation

The infrastructure has been initially tested by deploying a YASS instance on
a set of nodes. Using one front-end a number of files are stored and replicated.
Thereafter a node is stopped, generating one fail-event which is propagated to
the Storage-aggregator and to the FileReplica-aggregators of all files present on
the stopped node. Below is explained in detail how the self-management acts
on these events to restore desired system state.

Fig. 7 shows the management elements associated with the group of storage
components. The black circles represent physical nodes in the P2P overlay
Id space. Architectural entities (e.g. SNR and MEs) are mapped to ids. Each
physical node is responsible for Ids between its predecessor and itself including
itself. As there is always a physical node responsible for an id, each entity will
be mapped to one of the nodes in the system. For instance the Configuration
Manager is mapped to id 13, which is the responsibility of the node with id 14
which means it will be executed there.

Application Self-healing. Self-healing is concerned with maintaining the de-
sired replica degree for each stored item. This is achieved as follows for resource
leaves and failures:
Resource leave. An infrastructure sensor signals that a resource is about to

leave. For each file stored at the leaving resource, the associated FileReplica-

170 COREGRID SYMPOSIUM

aggregator is notified and issues a replicaChange-event which is forwarded to
the FileReplica-manager. The FileReplica-manager uses the one-to-any binding
of the file-group to issue a FindNewReplica-event to any of the components in
the group.
Resource failure. On a resource failure, the FileGroup-aggregator will check

if the failed resource previously signaled a ResourceLeave (but did not wait long
enough to let the restore replica operation finish). In that case the aggregator
will do nothing, since it has already issued a replicaChange event. Otherwise a
failure is handled the same way as a leave.

Application Self-configuration. With self-configuration we mean the ability to
adapt the system in the face of dynamism, thereby maintaining its capability to
meet functional requirements. This is achieved by monitoring the total amount
of allocated storage. The Storage-aggregator is initialized with the amount of
available resources at deployment time and updates the state in case of resource
leaves or failures. If the total amount of allocated resources drops below given
requirements, the Storage-aggregator issues a storageAvailabilityChange-event
which is processed by the Configuration-manager. The Configuration-manager
will try to find an unused resource (via the external resource management ser-
vice) to deploy a new storage component, which is added to the group of compo-
nents. Parts of the Storage-aggregator and Configuration-manager pseudocode
is shown in Listing 12.1, demonstrating how the stateful information is kept by
the aggregator and updated through sensing events, while the actuation com-
mands are initiated by the manager.

Application Self-optimization. In addition to the two above described test-
cases we have also designed but not fully tested application self-optimization.
With self-optimization we mean the ability to adapt the system so that it, be-
sides meeting functional requirements, also meets additional non-functional
requirements such as efficiency. This is achieved by using the ComponentLoad-
watcher to gather information on the total system load, in terms of used stor-
age. The storage components report their load changes, using application spe-
cific load sensors. These load-change events are delivered to the Storage-
aggregator. The aggregator will be able to determine when the total utilization
is critically high, in which case a StorageAvailabilityChange-event is gener-
ated and processed by the Configuration-manager in the same way as described
in the self-configuration section. If utilization drops below a given thresh-
old, and the amount of allocated resources is above initial requirements, a
storageAvailabilityChange-event is generated. In this case the event indicates
that the availability is higher than needed, which will cause the Configuration-
manager to query the ComponentLoad-watcher for the least loaded storage com-
ponent, and instruct it to deallocate itself, thereby freeing the resource. Parts of

Enabling self-management 171

Listing 12.1: Pseudocode for parts of the Storage-aggregator

upon event ResourceFailure (resource id) do
amount to subtract = allocated resources (resource id)
total storage = total amount − amount to subtract
current load = update (current load , total storage)
if total amount < initial requirement or current load > high limit then

trigger (availabilityChangeEvent (total storage , current load))
end

Listing 12.2: Pseudocode for parts of the Configuration-manager

upon event availabilityChangeEvent (total storage , new load) do
if total storage < initial requirement or new load > high limit then

new resource = resource discover (component requirements , compare criteria)
new resource = allocate (new resource , preferences)
new component = deploy(storage component description , new resource)
add to group(new component, component group)

elseif total storage > initial requirement and new load < low limit then
least loaded component = component load watcher . get least loaded ()
least loaded resource = least loaded component . get resource ()
trigger (resourceLeaveEvent(least loaded resource))

end

the Configuration-manager pseudocode is shown in Listing 12.2, demonstrating
how the number of storage components can be adjusted upon need.

4. Related Work

Our work builds on the technical work on the Jade component-management
system [3]. Jade utilizes the Java RMI, and is limited to cluster environments
as it relies on small and bounded communication latencies between nodes.

As the work here suggests a particular implementation model for distributed
component based programming, relevant related work can be found in research
dealing specifically with autonomic computing in general and in research about
component and programming models for distributed systems.
Autonomic Management. The vision of autonomic management as presented

in [11] has given rise to a number of proposed solutions to aspects of the
problem. Many solutions adds self-management support through the actions
of a centralized self-manager. One suggested system which tries to add some
support for the self-management of the management system itself is Unity [6].
Following the model proposed by Unity, self-healing and self-configuration are
enabled by building applications where each system component is a autonomic
element, responsible for its own self-management. Unity assumes cluster-like
environments where the application nodes might fail, but the project only partly
addresses the issue of self-management of the management infrastructure itself.

172 COREGRID SYMPOSIUM

Relevant complementary work include work on checkpointing in distributed
environments. Here recent work on Cliques [8]can be mentioned, where worker
nodes help store checkpoints in a distributed fashion to reduce load on man-
agers which then only deal with group management. Such methods could be
introduced in our framework to support stateful applications.
Component Models. Among the proposed component models which target

building distributed systems, the traditional ones, such as the Corba Component
Model or the standard Enterprise JavaBeans were designed for client-server re-
lationships assuming highly available resources. They provide very limited
support for dynamic reconfiguration. Other component models, such as Open-
COM [7], allow dynamic flexibility, but their associated infrastructure lacks
support for operation in dynamic environments.

The Grid Component Model, GCM [9], is a recent component model that
specifically targets grid programming. GCM is defined as an extension of
Fractal and its features include many-to-many communications with various
semantics and autonomic components.

GCM defines simple "autonomic managers" that embody autonomic be-
haviours and expose generic operations to execute autonomic operations, ac-
cept QoS contracts, and to signal QoS violations. However, GCM does not
prescribe a particular implementation model and mechanisms to ensure the ef-
ficient operation of self-* code in large-scale environments. Thus, GCM can be
seen as largely complementary to our work and thanks to the common ancestor,
we believe that our results can be exploited within a future GCM implementa-
tion. Behavioural skeletons [1] aim to model recurring patterns of component
assemblies equipped with correct and effective self-management schemes. Be-
havioural skeletons are being implemented using GCM, but the concept of
reusable, domain-specific, self-management structures can be equally applied
using our component framework.

GCM also defines collective communications by introducing new kinds of
cardinalities for component interfaces: multicast, and gathercast [2]. This
enables one-to-n and n-to-one communication. However GCM does not define
groups as a first class entities, but only implicitly through bindings, so groups
can not be shared and reused. GCM also does not mention how to handle failures
and dynamism (churn) and who is responsible to maintain the group. Our one-
to-all binding can utilise the multicast service, provided by the underlying P2P
overlay, to provide more scalable and efficient implementation in case of large
groups. Also our model supports mobility so members of the group can change
their location without affecting the group.

A component model designed specifically for structured overlay networks
and wide scale deployment is p2pCM [13], which extends the DERMI [12]
object middleware platform. The model provides replication of component in-
stances, component lifecycle management and group communication, including

Enabling self-management 173

anycall functionality to communicate with the closest instance of a component.
The model does not offer higher level abstractions such as watchers and event
handlers, and the support for self-healing and issues of consistency are only
partially addressed.

5. Future Work

Currently we are working on the management element wrapper abstraction.
This abstraction adds fault-tolerance to the self-* code by enabling ME repli-
cation. The goal of the management element wrapper is to provide consistency
between the replicated ME in a transparent way and to restore the replication
degree if one of the replicas fails. Without this support from the framework,
the user can still have self-* fault-tolerance by explicitly implementing it as a
part of the application’s non-functional code. The basic idea is that the man-
agement element wrapper adds a consistency layer between the replicated ME
from one side and the sensors/actuators from the other side. This layer provides
a uniform view of the events/actions for both sides.

Currently the we use a simple architecture description language (ADL) only
covering application functional behaviours. We hope to extend this to also
cover non-functional aspects.

We are also evaluating different aspects of our framework such as the over-
head of our management framework in terms of network traffic and the time
need execute self-* code. Another important aspect is to analyse the effect of
churn on the self-* code.

Finally we would like to evaluate our framework using applications with
more complex self-* behaviours.

6. Conclusions

The proposed management framework enables development of distributed
component based applications with self-* behaviours which are independent
from application’s functional code, yet can interact with it when necessary.
The framework provides a small set of abstractions that facilitate fault-tolerant
application management. The framework leverages the self-* properties of the
structured overlay network which it is built upon. We used our component
management framework to design a self-managing application to be used in
dynamic Grid environments. Our implementation shows the feasibility of the
framework.

References

[1] M. Aldinucci, S. Campa, M. Danelutto, M. Vanneschi, P. Kilpatrick, P. Dazzi,
D. Laforenza, and N. Tonellotto. Behavioural skeletons in GCM: Autonomic manage-
ment of grid components. In PDP ’08: Proceedings of the 16th Euromicro Conference

174 COREGRID SYMPOSIUM

on Parallel, Distributed and Network-Based Processing (PDP 2008), pages 54–63. IEEE
Computer Society, 2008.

[2] Francoise Baude, Denis Caromel, Ludovic Henrio, and Matthieu Morel. Collective in-
terfaces for distributed components. In CCGRID ’07: Proceedings of the Seventh IEEE
International Symposium on Cluster Computing and the Grid, pages 599–610, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[3] S. Bouchenak, F. Boyer, S. Krakowiak, D. Hagimont, A. Mos, J.-B. Stefani, N. de Palma,
and V. Quema. Architecture-based autonomous repair management: An application to
J2EE clusters. In SRDS ’05: Proceedings of the 24th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS’05), pages 13–24, Orlando, Florida, October 2005. IEEE.

[4] P. Brand, J. Höglund, K. Popov, N. de Palma, F. Boyer, N. Parlavantzas, V. Vlassov, and
A. Al-Shishtawy. The role of overlay services in a self-managing framework for dynamic
virtual organizations. In CoreGRID Workshop, Crete, Greece, June 2007.

[5] E. Bruneton, T. Coupaye, and J.-B. Stefani. The fractal component model. Technical
report, France Telecom R&D and INRIA, February 5 2004.

[6] D. Chess, A. Segal, I. Whalley, and S. White. Unity: Experiences with a prototype auto-
nomic computing system. Proc. of Autonomic Computing, pages 140–147, May 2004.

[7] G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and J. Ueyama. A component model
for building systems software. In Proceedings of IASTED Software Engineering and
Applications (SEA’04), Cambridge MA, USA, November 2004.

[8] D. Kondo F. Araujo, P. Domingues and L. Moura Silva. Using cliques of nodes to store
desktop grid checkpoints. InProceedings of CoreGRID IntegrationWorkshop 2008, pages
15–26, 2008.

[9] Basic features of the Grid component model. CoreGRID Deliverable D.PM.04, Core-
GRID, EU NoE project FP6-004265, March 2007.

[10] J. Hanson, I. Whalley, D. Chess, and J. Kephart. An architectural approach to autonomic
computing. In ICAC ’04: Proceedings of the First International Conference on Autonomic
Computing (ICAC’04), pages 2–9, Washington, DC, USA, 2004. IEEE Computer Society.

[11] P. Horn. Autonomic computing: IBM’s perspective on the state of information technology,
October 15 2001.

[12] C. Pairot, P. Garcı́a, and A. Gómez-Skarmeta. Dermi: A new distributed hash table-based
middleware framework. IEEE Internet Computing, 08(3):74–84, 2004.

[13] C. Pairot, P. Garcı́a, R. Mondéjar, and A. Gómez-Skarmeta. p2pCM: A structured peer-
to-peer Grid component model. In International Conference on Computational Science,
pages 246–249, 2005.

SELF-OPTIMIZING CLASSIFIERS:
FORMALIZATION AND DESIGN PATTERN∗

Marco Pasquali, Patrizio Dazzi
IMT (Lucca Institute for Advanced Studies) - Lucca - Italy
ISTI/CNR – Pisa – Italy & CoreGRID Programming Model Institute

m.pasquali@isti.cnr.it, p.dazzi@isti.cnr.it

Antonio Panciatici
Engineering PhD School “Leonardo da Vinci” – Pisa – Italy

antonio.panciatici@iet.unipi.it

Ranieri Baraglia
ISTI/CNR – Pisa – Italy & CoreGRID Resource Management and Scheduling Institute

r.baraglia@isti.cnr.it

Abstract In this paper we propose a design pattern for self-optimizing classification sys-
tems, i.e. classifiers able to adapt their behavior to the system changes. First, we
provide a formalization of a self-optimizing classifier we use to derive the design
pattern. Then, we describe the pattern classes, their interactions, and validate our
approach applying the proposed pattern to a real scenario. Finally, to evaluate
the proposed solution we compare the behavior of the self-optimizing classifier
with a not self-optimizing one. Experimental results demonstrate the approach
effectiveness.

Keywords: Self-Optimizing Systems, Classification Systems, Heuristics Driven Systems

∗This research is carried out under the FP6 Network of Excellence CoreGRID and the FP6 GridCOMP
project funded by the European Commission (Contract IST-2002-004265 and FP6-034442).

176 COREGRID SYMPOSIUM

1. Introduction

Autonomic Computing is an initiative started by IBM in 2001 (aka ACI
[11]), its aim is to create self-managing computer systems to overcome their
rapidly growing complexity, and to enable their further growth. ACI focuses
on the definition of foundations for autonomic systems, and in particular, on
the definition of fundamental elements to make computing system autonomous,
i.e. self-optimizing, self-configuring, self-healing, and self-protecting.

In this paper we propose a design pattern that drives programmers in im-
plementing self-optimizing classification systems, i.e. classifiers able to adapt
their behavior to system changes. Classification systems are used to classify
items according to a rule or a heuristics defined by the system administrator.
The heuristics defines the classifier behavior, and it is used to mark items with
a priority value representing their relevance. A self-optimizing classifier must
be able to face up system changes in order to obey a given classification policy.

In order to define our design pattern, we formalize a general classifier that
does not adapt itself to system changes pointing out its main functions and their
interactions. Afterwards, we extend the classifier formalization introducing
elements needed to define a self-optimizing classifier (Section 2). In Section
3, we enrich the classifier formalization with the concept of polytope. Section
4 describes the design pattern we defined starting from the formal model. In
Section 5, we describe a case study used to validate our approach. Section 6
describes the conducted experiments and the obtained results. In Section 7
related works are described. Finally, in Section 8 conclusions and future work
are presented.

2. Formalization of Priority Classification Systems

A priority classification system S can be formally described according to the
following higher-order function:

fS : I × Fstrategy −→ O (1)

where I is the set of all possible items that need to be classified, Fstrategy is
the set of all the possible strategy-functions, and O ⊂ N is a finite set of output
values. A strategy-function fstrategy ∈ Fstrategy is defined as:

fstrategy : I → O

The system S applies fstrategy to each input i ∈ I in order to assign it an
input item priority value p ∈ O. A priority classifier system can be defined
self-optimizing when it is able to adapt its behaviour according to input values
to compute valid classifications. From our perspective, a priority classifier
behaves correctly when it is able to satisfy two requirements:

SOC: Formalization and Design Pattern 177

• the priority value assigned to each input item is well-proportioned to the
item relevance (e.g. important items must obtain high priorities),

• the distribution of the priorities assigned by the classifier must be coherent
with a target policy.

To model the classifier self-optimization mechanism, we need to enrich the
definition of the strategy-function based classification systems, by defining how
the strategy-function can be modified to enhance the classification precision.
For this purpose we introduced three new entities: evaluator, historical data
and reconfigurator. The evaluator evaluates the data previously evaluated by
the classifier (historical data), and if needed it changes the strategy-function
by using the reconfigurator.

Formally, the reconfiguration and evaluation activities can be modeled by
using the two following functions:

Feval : H × C −→ C (2)

Freconf : C −→ Fstrategy (3)

H is the power set of all possible historical data values and C is the set of
all possible configurations used by Freconf to select an appropriated strategy-
function among the available ones.

Moreover, we introduce hcurrent – the actual set of the classifier historical
data, dcurrent – the distribution of priorities in hcurrent, and dtarget – the target
priorities distribution.

Every time a new item comes into the classifier, Feval analyzes the historical
data hcurrent ∈ H and computes the priorities distribution dcurrent ∈ H . If
there is an incoherence between the dcurrent priority distribution, and the target
one (dtarget), Feval generates a new configuration c ∈ C . If Feval does not
recognize any incongruence, it simply returns as new configuration the current
one. When a new configuration is available, Freconf uses this configuration in
order to select a different, more appropriate, fstrategy in the Fstrategy set.

3. Polytope

In the proposed formalization, the self-optimizing classification system can
access to an unlimited set of historical data, and it generates a new strategy
function if Feval recognized differences between dcurrent and dtarget. However,
more realistic systems can only access to a finite set of historical data, and their
reconfiguration mechanisms do not generate a new strategy function every time
the classifier does not carry out the expected result. Indeed, in a real scenario, the
evaluation mechanism should trigger strategy function changes only when the
current behavior of the classifier is considered quite different with respect to the
expected one. In order to formalize that, we exploited the concept of polytope.

178 COREGRID SYMPOSIUM

Let be the output of Feval a point in a geometric space (i.e. the range of values)
in which the classifier is free to move without implying a reconfiguration of the
strategy-function. Such geometric space represents a polytope.

We can define the polytope P of a strategy-function S, the set C of the Feval

outputs that does not trigger the strategy-function reconfiguration. Formally:

P = {Sc | AcceptanceS(Sc)}
where AcceptanceS is a Boolean function that returns true if the strategy-
function behavior is acceptable.

From a formal point of view, in order to consider the polytope, the Feval func-
tion must be changed. Indeed, it has to generate a new fstrategy configuration
only if dcurrent does not belong to P:

Feval : H × C × P −→ C

4. Self-Optimizing Design Pattern for Priority
Classification Systems

We exploited the presented formalization to propose a self-optimizing de-
sign pattern in order to provide a general repeatable design solution easing the
implementation of self-optimizing classifier.

According to our formalization, a classification system can be seen made up
of three entities: InputStream, Classifier and OutputStream.

• InputStream: a stream of independent elements I among which there
are not dependencies.

• Classifier: a classification function (f) applied to each element of I .

• OutputStream: a stream of elements O such that each element is
e′i = f(ei) with ei ∈ I and e′i ∈ O.

Classifier retrieves an input element (or item) from InputStream, clas-
sifies the element, and sends it to OutputStream.

Classifier is, in turn, made up of four entities. Its main entity, called
Strategy, is devoted to classify incoming items, to evaluate itself, and if
needed, it changes its own behavior accordingly to some rules. To perform
these tasks Strategy uses three entities: DataRepository, Evaluator

and Reconfigurator.

• DataRepository: holds up to a finite number of past input elements
coupled with the respective computed outputs.

• Evaluator: suggests a Strategy reconfiguration. It takes as input
the current configuration of Strategy, and using the data stored in
DataRepository, suggests a change in Strategy behavior.

SOC: Formalization and Design Pattern 179

• Reconfigurator: takes as input the Strategy and the output of
Evaluator. It is able to reconfigure Strategy, acting onto its spe-
cific tuning parameters, in order to optimize its performance.

Classifier forwards the items retrieved from InputStream directly to
Strategy. Before to classify the items, Strategy evaluates its own con-
figuration by invoking Evaluator. Evaluator reads the past input/output
from DataRepository and then evaluates the adherence of the classifier be-
havior w.r.t. the expected classification policy. If the behavior is different from
the expected one, Evaluator suggests a change in Strategy configura-
tion. If a reconfiguration is needed, Strategy invokes Reconfigurator

passing it, as parameters, the reconfiguration suggested by Evaluator and
the pointer to the Strategy object. Reconfigurator retrieves the tuning
parameters of the Strategy object, it changes the Strategy configuration,
and as a consequence, the behavior of Strategy. After the reconfiguration,
Strategy computes the output values according to its new configuration, and
stores both the input and the computed output into DataRepository. Fi-
nally, Strategy sends the computed output back to Classifier, which in
turn sends it to OutputStream. Figure 1 depicts the UML schema of our
self-optimizing design pattern.

In Table, 1 we point out how the abstract model of our classifier can be
mapped into the defined design pattern.

Abstract Model Functions Design Pattern Components
I InputStream

fstrategy Strategy

Feval Evaluator

Freconf Reconfigurator

H DataRepository

O OutputStream

Table 1: Abstract Model - Design Pattern mapping

5. Case study

To validate our approach we applied it to a real scenario. It concerns to a
Grid job scheduler. The scheduler is made up of two parts: a classifier, and
a scheduler. The former assigns priorities to jobs evaluating their deadline,
i.e. the time at which the execution of a job has to be finished. The latter
is basically a Backfilling-based scheduler. Jobs are ordered in the backfilling
queue according to their priorities. To assign priorities the classifier exploits the
DeadLine heuristics (see below), which is able to recognize the relevance of each

180 COREGRID SYMPOSIUM

Figure 1: UML schema of the proposed autonomic strategy pattern.

job, exploiting only the job deadline parameter. The conducted experiments aim
to demonstrate that the provided formalization, and the derived pattern makes
easier the development of a self-optimizing classifier able to recognize its own
bad behaviors and to fix them.

5.1 Static DeadLine Heuristics

The first version of Deadline has been proposed in [13]. It is a heuristics
for job priorities assignment, which behaviour can be configured by the system
administrator, who can specify a classification policy. Such policy can be used
to express the heuristics required behavior [6], i.e. the prioirty distribution the
administrator defines as optimal. As target priorities distribution we chose the
exponential one, i.e. a distribution in which the number of jobs with priority p is
equal to θ-times number of jobs with priority p− 1. Where θ is the distribution
rate parameter. This permits the system to strongly limit the number of jobs
characterized by the highest priority value and, as a consequance, to increase
the probability that jobs with high priorities will match their deadline.

The DeadLine heuristics computes each job priority considering a value
called Margin. It represents the maximum time, expressed in simulator time
units, the system can delay the job execution without missing the job deadline.

In order to compute the job Margin three values are needed: job estimated
execution time – an estimation of the time requested to compute the job, job

SOC: Formalization and Design Pattern 181

submission time – the time at which the job has been submitted to the system,
and job deadline – the time at which the job has to be completed. Margin is
computed subtracting from the job deadline the sum of job estimated execution
time and job submission time.

To compute the priority value of a job i, i.e. Pi, DeadLine computes the
average margin value, E[Margin], as:

E[Margin] =
∑|N |

i=1 Margini

N
. (4)

where N specifies the number of jobs elaborated by the heuristics before i.
Such jobs contribute to compute the average margin (E[Margin]).

To compute Pi, DeadLine considers the double value of average margin
(2×E[Margin]). This value can be considered as a separator between jobs with
close deadlines, and the others. The interval [0; 2×E[Margin]] is subdivided

Figure 2: Graphical representation of Margin, job submission time, job estimated execution
time, and job deadline.

in a number of subintervals equals to the number of admitted priorities according
to the following formula:

interval(max−k) = [Sk, Sk+1] with k = 0, ...,max

where max is the highest priority value assignable to a job, and where:⎧⎨
⎩

S0 = 0

Sk = Sk−1 + MinUnity · 2k

where MinUnity is

MinUnity =
2 ∗ E[Margin]∑max

k=1 2k
(5)

DeadLine assigns to jobs with a Margin value grater than E[Margin] ∗ 2
the minimum priority value. This rule has been introduced for completeness.

182 COREGRID SYMPOSIUM

In this way, Deadlines is able to assign priorities whatever the job Margins are.
Even jobs with a longtime deadline can be classsified with a low relevance.

5.2 Self-Optimizing DeadLine Heuristics

The static DeadLine heuristics does not compute profitable classification
when the job input stream (js) is made of job sub-streams (js1, js2, ...), each
of which characterized with a Margin different from the ones characterizing
neighbouring substreams. As an example, let we define a stream constituted by
two substreams. The first one, made up of jobs characterized by small margin
values, and the second one made up of large values. In this case, in the bound-
ary region between the two substreams, with high probability Deadline will
assign the lowest priority value to each job belonging to the second substream,
violating the target distribution policy. Note that this problem occurs only in
the boundary region because the DeadLine heuristics, even in its static form,
computes priorities taking its standings on the average Margin value computed
considering the last k elapsed jobs. Where k is a configurable parameters.

To avoid this phenomenon, we designed a DeadLine heuristics-based self-
optimizing classifier. Such classifier is able to change the item classification
according to the past assigned priorities, in order to address the target priority
distribution. We enriched the static Deadline heuristics, introducing the base
parameter. Acting on the parameter it is possible to change the DeadLine
behavior. In particular, we modify the expression (5) as:

MinUnity =
2 ∗ E[Margin]∑max

k=1 basek

This cause a different partitioning of the [0, 2∗E[Margin]] interval. In partic-
ular, higher values of base increase the number of subintervals for low values
of Margin, whereas values of base belonging to the (0, 1) interval increase the
number of subintervals for high values of Margin. In order to design our self-
optimizing classifier, we exploited the design pattern we propose. We mapped
our classifier in the pattern classes organization depicted in Figure 1. The in-
put and output job stream have been mapped respectively with InputStream

and OutputStream classes. Reconfigurator, DataRepository and
Evaluator classes have been implemented with Reconf , Data and Eval,
respectively. Data contains the classifier historical data about the past jobs.
Eval analyzes the priority values contained in Data and returns a new value
for the base parameter. Reconf uses the output of Eval to produce a new
[0, 2 ∗E[Margin]] interval partitioning. We developed Eval according to the
polytope definition. Our polytope is defined in the vector space D withP dimen-
sions, where P is the number of possible priority values. Each priority distribu-
tion, obtained from h ∈ H , is represented with a vector d = (d1, ..dk, .., dP).
Each component dk of d is a value grater than or equal to zero and less than

SOC: Formalization and Design Pattern 183

Figure 3: Job Streams details

or equal to one (0 ≤ dk ≤ 1 ∀k=1,..,P). It represents the percentage of jobs
belongings to historical data h to which the system has assigned the priority
k ∈ P . Since each component dk is a percentage grater than zero and less than
one, the sum of all dk must be equal to one (

∑P
k=1 dk = 1). We enforce this

last constraint by using the Norm (‖.‖1). The polytope is defined as:

P = {d : ‖d − dtarget‖2 ≤ δ}
It defines a circular region with a radius δ containing all the priority distributions,
which are far from the dtarget less than δ. The measure of the distance is
performed using the Euclidean Norm (‖.‖2). In other words, if dcurrent belongs
to the polytope P it means that the distance between dcurrent and dtarget is
less than the fixed radius δ, hence fstrategy does not need to be reconfigured,
otherwise a new configuration is returned.

6. Experiments

We conducted some tests in order to evaluate the goodness of the Self-
Optimizing DeadLine Heuristics (ADH). We applied the classification algo-
rithm to three different job streams. Each one with a different distribution of
the Margin value. In the first stream Margin was distributed according to
a uniform distribution, whereas in the second and third streams according to a
non-uniform one. In particular, both the second and the third streams were char-
acterized by four interleaved sub-streams each of which has a different margin
distribution. All tests have been performed using an event-driven simulator.
Each simulation step includes: (i) selection and classification of new jobs, (ii)
update of the system and heuristics state, (iii) check for correct behavior of the
system and (iv) system adaptation. Figure 3 reports the three different streams
of jobs we used to tests. Figure 4 reports the results of the first simulation. It’s
easy to see that the result of both the static heuristics and the self-optimizing
heuristics are identical. That is because, the Margin distribution of the stream
does not change enough to trigger the ADH intervention. Figures 5 and 6
reports the results of the tests conducted using the second and third streams,
respectively. In both the cases, ADH performs better than the original Dead-

184 COREGRID SYMPOSIUM

Figure 4: Deadline and ADH performances processing the first stream of jobs

Figure 5: Deadline and ADH performances processing the second stream of jobs

Line. Indeed, in most cases the ADH bar is closer to the “optimal” than the
Deadline bar. This is because, the original DeadLine heuristics is not able per
se to handle rapid and significant changes in the Margin distribution.

SOC: Formalization and Design Pattern 185

Figure 6: Deadline and ADH performances processing the third stream of jobs

7. Related work

Adaptive performance tuning has only recently become conceivable, so only
few papers address it directly. Diao et al. [7] analyze how to choose certain
parameters of the Apache web server in order to keep CPU and memory usage
near a pre-set parameter. The authors make the assumption that there is an
optimal setting for those parameters, and make no claim that the parameters
impact the performance of the web server in a known way. Bahati et al. define
a policy as a notation to express required behavior of systems and applications.
In [3], they describe how policies are exploited and how they are realized as
actions driving autonomic performance management of an Apache Web server.
In [15], Warren e al. describe mechanisms used to realize dynamic recon-
figuration respecting a number of fundamental issues when making run-time
changes. Their work concerns with preserving an application’s integrity during
periods of runtime change.They suggest that such mechanisms have to behave
according to: (1) the dynamic reconfiguration capability should not compro-
mise applications integrity/correctness, (2) the run-time overhead introduced
by a reconfiguration management facility should be acceptable, (3) the dynamic
reconfiguration should be transparent to application developers. Their work are
particularly concerned with preserving the application integrity during periods
of runtime change. They have extended OpenRec (a framework for manag-
ing reconfiguration of component-based applications [10]) with functionality,

186 COREGRID SYMPOSIUM

which automatically verifies the structure of an application during periods of
dynamic reconfiguration.

Other approaches optimize performance maintaining a fixed level of service
[1, 5, 9]. Abdelzaher et al. [1] outline a system that maintains multiple complete
content trees, each with a different quality setting. As workload increases,
quality can be decreased in order to satisfy the maximum number of users.
Additionally, Cohen et al. [5] use Tree-Augmented Naive Bayesian Networks
to correlate system statistics to a high-level performance metric (compliance
or non-compliance with required service levels). Unlike our work, this work
relies on a specialized instrumentation layer.

Hellerstien et al. [9] analyze the performance of a system over large spans of
time with statistical models. In this way they can determine when unexpected
behaviors occurred, and they can reconfigure the system. Other works within
the field of autonomic computing focus on: file system organization [12], adap-
tive branch prediction [8], autonomous network creation [4], installation and
configuration analysis [2] and utility function optimization [14].

8. Conclusions and Future Works

In this paper we modeled a classification system, and we proposed a new de-
sign pattern to implement self-optimizing classifiers. We presented the compo-
nents, and their interactions that programmers have to implement when design-
ing a self-optimizing classifier. Furthermore, we exploited our design pattern to
implement a classifier as a case study. We showed the way our classifier adapts
itself to different situations, and we evaluate the proposed solution by compar-
ing its resulting classifications to those computed by a not adapting classifier,
elaborating the same job streams. As future works we plan to investigate the
feasibility of our solution to complex and real scenarios.

References

[1] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance guarantees for Web
server end-systems: A control-theoretical approach. IEEE Transactions on Parallel and
Distributed Systems, 2002.

[2] Gagan Aggarwal. On identifying stable ways to configure systems. In ICAC ’04: Pro-
ceedings of the First International Conference onAutonomicComputing (ICAC’04), pages
148–153, Washington, DC, USA, 2004. IEEE Computer Society.

[3] Raphael M. Bahati, Michael A. Bauer, and Elvis M. Vieira. Mapping policies into auto-
nomic management actions. icas, 0:38, 2006.

[4] Yu-Han Chang, Tracey Ho, and Leslie Pack Kaelbling. Mobilized ad-hoc networks: A
reinforcement learning approach. icac, 00:240–247, 2004.

[5] Ira Cohen, Jeffrey S. Chase, Moisés Goldszmidt, Terence Kelly, and Julie Symons. Cor-
relating instrumentation data to system states: A building block for automated diagnosis
and control. In OSDI, pages 231–244, 2004.

SOC: Formalization and Design Pattern 187

[6] Patrizio Dazzi, Francesco Nidito, and Marco Pasquali. New perspectives in autonomic
design patterns for stream-classification-systems. InWRASQ ’07: Proceedings of the 2007
workshop on Automating service quality, pages 34–37, New York, NY, USA, 2007. ACM.

[7] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus. Managing web server performance
with autotune agents. IBM Syst. J., 42(1):136–149, 2003.

[8] Alan Fern, Robert Givan, Babak Falsafi, and T. N. Vijaykumar. Dynamic feature selection
for hardware prediction. J. Syst. Archit., 52(4):213–234, 2006.

[9] Joseph L. Hellerstein, Fan Zhang, and Perwez Shahabuddin. Characterizing normal op-
eration of a web server: Application to workload forecasting and problem determination.
In Int. CMG Conference, pages 150–160, 1998.

[10] J. Hillman and I. Warren. An open framework for dynamic reconfiguration. ICSE ’04:
Proceedings of the 26th International Conference on Software Engineering, page 594–
603, 2004.

[11] IBM. Autonomic Computing Initiative. www.ibm.com/autonomic.

[12] Michael Mesnier, Eno Thereska, Gregory R. Ganger, and Daniel Ellard. File classification
in self-* storage systems. In ICAC ’04: Proceedings of the First International Conference
on Autonomic Computing (ICAC’04), pages 44–51, Washington, DC, USA, 2004. IEEE
Computer Society.

[13] Marco Pasquali, Ranieri Baraglia, Gabriele Capannini, Laura Ricci, and Domenico
Laforenza. A two-level scheduler to dynamically schedule a stream of batch jobs in large-
scale grids. In Proceedings of the 17th HPDC: ACM/IEEE International Symposium on
High Performance Distributed Computing, 2008. Accepted as a Poster.

[14] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Utility functions in autonomic
systems. In In Proceedings of the 1st International Conference on Autonomic Computing,
May 2004.

[15] Ian Warren, Jing Sun, Sanjev Krishnamohan, and Thiranjith Weerasinghe. An automated
formal approach to managing dynamic reconfiguration. In ASE ’06: Proceedings of the
21st IEEE International Conference on Automated Software Engineering (ASE’06), pages
37–46, Washington, DC, USA, 2006. IEEE Computer Society.

IV

GRID MIDDLEWARE

A TRACE-BASED INVESTIGATION OF THE
CHARACTERISTICS OF GRID WORKFLOWS

Simon Ostermann, Radu Prodan, and Thomas Fahringer
University of Innsbruck, AT

simon@dps.uibk.ac.at

radu@dps.uibk.ac.at

tf@dps.uibk.ac.at

Alexandru Iosup and Dick Epema
Delft University of Technology, NL

A.Iosup@tudelft.nl

D.H.J.Epema@tudelft.nl

Abstract Grid computing promises to enable a reliable and easy-to-use computational in-
frastructure for e-Science. To materialize this promise, grids need to provide
full automation from the experiment design to the final result. Often, this au-
tomation relies on the execution of workflows, that is, of jobs comprising many
inter-related computing and data transfer tasks. While several grid workflow
execution tools already exist, not much is known about their workload. This
lack of knowledge hampers the development of new workflow scheduling algo-
rithms, and slows the tuning of existing ones. To address this situation, in this
work we present an analysis of two workflow-based workload traces from the
Austrian Grid. We introduce a method for analyzing such traces, focused on the
intrinsic and on the environment-related characteristics of the workflows. Then,
we analyze the workflows executed in the Austrian Grid over the last two years.
Finally, we identify six categories of workflows based on their intrinsic workflow
characteristics. We show that the six categories exhibit distinctive environment-
related characteristics, and identify the categories that are difficult to execute for
common workflow schedulers.

Keywords: grid, workload traces, workflow execution, workflow characteristics, statistic
analysis

192 COREGRID SYMPOSIUM

1. Introduction

The grid computing vision aims for an simple useable, dependable, and
efficient computing architecture and structure. For this vision to become reality,
grids must fully automate the process that starts with experiment design and
ends with analysis results. In turn, the full automation necessarily involves
the execution of workflows, that is, of jobs with a task graph structure and
comprising computing and data transfer tasks [12–13]. While several grid
workflow execution engines have recently emerged [17], not much is known
about their demand, impacting adversely the evolution of old and new workflow
engines. To address this situation, in this work we analyze the workflow-based
e-Science applications executed in the Austrian Grid for the past two years.

Currently, there are no publicly available traces of workflow-based grid work-
loads, that is, of grid workloads that include workflows. This lack of information
hampers the testing and the tuning of existing workflow engines, and the study
and evolution of new workflow scheduling algorithms. Without proper testing
workloads, workflow engines may fail when facing high load or border cases of
workload characteristics. Without detailed workload knowledge, tuning lacks
focus and leads to under-performing solutions. Without an understanding of
real workloads, current research studies use synthetically generated workflows,
and are limited in scope and applicability. Moreover, evolution lacks real prob-
lems, and may lead to impractical solutions. Understanding the characteristics
of existing grid workloads is key to alleviating all these issues. As a first step
towards understanding grid workflows, we study two long-term workload traces
from the Austrian Grid. The goal of this work is the analysis of the traces and
not comparison of their underlaying environment. However, the data alone are
insufficient: there is a need for new methods to extract and analyze the work-
flow characteristics from the workload traces. Furthermore, there is a need to
identify the class(es) of workflows for which the execution environment yields
distinctively poor performance. Our contribution is threefold:

1 We propose a method for analyzing the intrinsic and the environment-
related characteristics of workflow-based grid workloads;

2 We apply the proposed method on two long-term grid workload traces
taken from the Austrian Grid;

3 Based on the results of the analysis, we identify six classes of workflows
with distinct properties, facilitating the identification of the classes which
the execution environments can handle the worst to identify improvement
possibilities.

Trace-Based Characteristics of Grid Workflows 193

Figure 1: A sample workflow: Wien2k [1]. (left) in AGWL. (right) a possible DAG.

2. Background

In this section we present the background information necessary for follow-
ing this work. We first introduce the workload model used throughout this
work. Then, we present DEE and EE2, the workflow engines that executed the
workflows investigated in this work.

2.1 A Workflow Model

We use for grid workflows the model introduced by Coffman and Gra-
ham [12]. Formally, a workflow is a directed graph G in which nodes are
computational tasks, and the directed edges represent communication; we de-
note the number of nodes and edges by N and E respectively. To begin a task,
all its predecessor tasks and all communication with that task as the sink must
be finished. For simplicity, we consider only directed acyclic graphs (DAGs),
that is, there does not exist a loop in the directed graph which may require loop
unrolling. We call root a node without predecessors; a DAG may have several
roots. We further define a node’s level, derived from breadth-first traversal of
the task graph from its roots [2], as the minimal size of a path from the top to this
node (in number of edges); the level of a root is 0. Finally, we call the maximum
level of a leaf in the graph the graph level, which we denote by L−1; we denote
by L the graph traversal height. Note that parameter sweeps and other batches
of jobs [10] may be considered as degenerate workflows with L = 1, and that
master-worker applications can be seen as workflows with L = 3 (including a
final task to assemble the worker results).

194 COREGRID SYMPOSIUM

Figure 1 (left) shows a sample workflow from ASKALON [4], defined by
the user in the Abstract Grid Workflow Language (AGWL) [5]. Figure 1 (right)
depicts an instance of this example that has one iteration of the outermost while
loop. The number of nodes N is 11, the number of edges E is 16, and the graph
traversal height L is 5.

2.2 The ASKALON Workflow Engine

The ASKALON grid middleware [14] can execute via its workflow execution
engine workflows specified in AGWL. While execution, this abstract specifi-
cation is instantiated, that is, the tasks are annotated with details concerning
the used resources. ASKALON’s workflow execution engine features a fine
grain event system which is implemented as WSRF service and allows event-
forwarding even through NAT or firewalls. An overview of this and other grid
workflow systems can be found in the taxonomy of workflowsystems [17].

In the past two years, the ASKALON workflow execution engine evolved in
two major steps. The first version, DEE [3], focused on functionality. DEE’s
primary shortcomings were the internal loop unrolling from the workflow spec-
ification, and the complete scheduling at the start of the execution. To improve
on scalability and on adaptability to highly dynamic grid environments, the
second generation engine EE2 was developed [16]. The EE2 uses internally
a structure that is kept close to the AGWL specification and better scales for
the execution of large workflows. Each job that is ready for execution will
dynamically be send to the best available grid site at this moment.

3. A Method for Workflow-based Grid Workloads Analysis

In this section we introduce a method for analyzing workflow-based grid
workloads. The goal of our analysis is to establish the main characteristics of the
workload such that building a workflow-based grid workload model is greatly
facilitated. For our method to be applicable, the analyzed traces need to be long-
term (i.e. at least a month) and to provide sufficient statistical confidence (i.e.,
to include at least several hundreds of workflows each). From a technical point
of view, we extract for each workflow characteristic a comprehensive set of
statistical properties (i.e. min, max, average, std. deviation and quantiles). We
also compute the empirical distribution of the characteristics. For an overview
of these statistical tools we refer to Jain’s classical text [11].

Our method divides the characteristics into two classes, workflow-intrinsic
and environment-related. We first analyze the intrinsic workflow character-
istics in Section 3.1, which allows us to identify the workflow classes that
may have different environment-related characteristics. Then, we analyze the
environment-related characteristics for the complete workload data and per
class in Section 3.2.

Trace-Based Characteristics of Grid Workflows 195

3.1 Intrinsic Workflow Characteristics

The intrinsic workflow characteristics refer to the size and the structure of the
workflows, and to their arrival pattern. We assume that users are not influenced
by the system properties (e.g. size) when defining their workload, and that
the submission of the workflows is independent from the state of the system
(though the submission of the tasks to the grid by the workflow engine may not
be).

To characterize the workflow size and graph structure, we employ the fol-
lowing characteristics (listed in the chronological order of their analysis within
our method):

Number of nodes (N), Number of edges (E), Graph level (L) ;

Branching Factor (BF) defined as the ratio between the number of edges E
and the number of nodes N . The branching factor may have a high impact
on the graph execution time: the higher the branching factor, the higher
the probability that a task’s execution is delayed due to waiting for its
predecessors.

Work Size defined as task runtime of a task on a base platform. To compute the
task work size we face the problem of data coming from a heterogeneous
environment: the same task may take different runtime when executed
by different resources. To compute the work size, we normalize the
task runtime logged in the workload trace with the ratio between the
performance of the resource on which the task is executed and that of a
base resource. Following the example of CERN’s WLCG, at over 50,000
computing resources the largest grid that publishes size information, we
express the resource performance in SPECInt2000 values. SPECInt2000
is a collection of twelve benchmarks representative for industrial and
scientific applications [7].

The choice of using the SPECInt2000 values is based on the implicit
assumption that this benchmark is representative for the applications ex-
ecuted in the studied workload trace.

Variability of the work size inside a workflow (WSV) defined as the ratio be-
tween the runtime of the longest and of the shortest task. The higher the
variability, the more difficult it is for a task or workflow runtime pre-
dictor [18] to operate, leading to potentially low performance for the
workflow scheduler.

Sequential execution path defined for a workflow as the sum of the work sizes
of its tasks;

196 COREGRID SYMPOSIUM

Trace Source Duration Number of WFs Number of Tasks CPUdays.

T1 DEE 09/06-10/07 4,113 122k 152
T2 EE2 05/07-11/07 1,030 46k 41

Table 1: Workflow-based traces analyzed for this work.

Critical execution path defined for the longest execution path in the workflow
graph. Any delay of a task on this path will result in a delay of the total
executions end. [2].

3.2 Environment-Related Workflow Characteristics

The environment-related workflow characteristics are time-related (e.g., wait,
run, and makespan), scheduler-related (e.g., makespan vs. critical path), and
failure-related (e.g., amount of failures).

We employ the following performance metrics:

Makespan defined for a workflow as the time elapsed between the workflow’s
entering and exiting the system.

Speedup (S) defined as the ratio between a workflow’s makespan and its se-
quential execution path size.

Normalized Schedule Length (NSL) [13], defined as the ratio between a work-
flow’s makespan and its critical path size.

Success Rate (SR) defined for a workflow as the percentage of tasks that fin-
ished correctly from the workflow tasks.

4. The Results

In this section we describe the long-term trace data collected from the Aus-
trian Grid, and the results obtained when applying the method described in the
previous section to these data.

4.1 The Workload Traces

In this work we use two traces collected from the Austrian Grid over a period
of more than one year. The T1 (T2) trace was collected from the system using
the DEE (the EE2) as workflow engine (see Section 2.2). Table 1 summarizes
the characteristics of the traces used in this work. Each of the traces contains
information about more than a thousand workflows, satisfying our analysis
method’s input requirements.

Trace-Based Characteristics of Grid Workflows 197

Figure 2: The workflow structure for T1 and T2. (top left) number of nodes. (top right) graph
traversal height. (bottom) average branching factor.

The collected traces consist mostly of workflow test runs, albeit often of
production workflows, done by the developers of the system in order to find
bugs and drive development. Thus, the results presented in this section should
be regarded as guiding, but not definitive, in establishing the characteristics of
the grid workflows.

4.2 The Intrinsic Workflow Characteristics

Figure 21 shows the graph size and structure of the workflows from both
studied traces. The average number of tasks per workflow is 30±702 for T1 and
44±91 for T2. The fact that the average is much higher than third quartile (25
and 31 for T1 and T2, respectively) indicates a skewed distribution, confirmed
by Figure 2(bottom). For both traces, 75% of the workflows have fewer than
40 tasks, and 95% of the workflows have fewer than 200 tasks. The average
branching factor is 0.64±0.67 for T1 and 0.86±0.46 for T2. This indicates that
users prefer to submit loosely-coupled tasks, that is, tasks that do not depend on
many previous results. Thus, the properties of N and those of E are very similar
(we have also validated this finding separately). The graph level is 3.73±14.04
for T1 and 2.25±1.0 for T2, indicating that the new engine is mostly used for

1All CDF graphs in this paper are discrete as they map real values to their integral part before the accumulation.
2We use throughout this work the notation μ ± σ to denote a set of values with the average μ and the
standard deviation σ. Note that in some cases the values below or equal to zero are not meaningful, e.g., for
the number of tasks in the workflow.

198 COREGRID SYMPOSIUM

Class N L BF

Small <5 - -
Medium 5–100 - -
Large >100 - -
Branchy - - ≥1.0
Flat - ≤2 -

Table 2: Classes of workflows based on their size and structure properties.

Figure 3: The distribution of the work sizes of the workflow tasks. (left) overall. (right) per
workflow class.

graphs with little depth. For T2, slightly over 80% of the workflows have at
most two levels.

Based on the results for the graph size and structure and experience from
[10], we define the workflow classes summarized in Table 2; mixed classes can
also be formed. The Small, Medium, and Large classes refer to the workflow
size. The Branchy class contains workflows with more edges than usual. The
Flat class contains workflows with at most two levels. Throughout the rest
of this work we focus on the following classes: Small/Medium/Large(all the
size-related classes), Branchy, Large and Flat, and Large and Branchy.

Figure 3 shows the CDF of the workflow tasks’ Work Size, in normalized
seconds (the runtime on a machine with a speed of 1000 SPECInt2000). While
over 75% of the tasks take less than 100 seconds, the other 25% can take up
to 4 hours (half an hour) for T1 (T2). Around 25% of the large and flat tasks
took over 350 seconds while only 2% of the small tasks takes longer then 80
seconds. The medium runs have an overall lower task work size compared to
the total (all), while the large a higher size.

Figure 4 shows the CDF of the workflow tasks’ Work Size variability (see
Section 3.1). More than 75% of the workflows have a Work Size variability
below an order of magnitude of the task runtime variability. The maximum
variability is over 3000 (150) for T1 (T2). Around 95% of the small workflows

Trace-Based Characteristics of Grid Workflows 199

Figure 4: The distribution of the work size variability of the workflow tasks. (left) overall.
(right) per workflow class.

Figure 5: The distribution of the makespan of the workflows. (left) overall. (right) per workflow
class.

have a variability smaller then 5 while approximately 20% of all the large
workflows have a variability lower then 5.

4.3 The Environment-Related Workflow Characteristics

Figure 5 shows the CDF of the workflow makespan. Less than 5% of the
T1 workflows take more than one hour; none of the T2 workflows reach one
hour. Over 50% of the workflows take less than 4 minutes. As expected large
workflows have a higher makespan than short ones.

Figure 6 shows the CDF of the workflow speedup. The average speed-up is
2.54±4.92 for T1 and 8.21±11.11 for T2; the median is 1.15 for T1 and 4.61 for
T2. The first quartile value is 0.41 for T1 and 1.70 for T2. This means that for
T1 the benefit of executing workflows is in general reduced; also for T1, 25%
of the workflows are slowed down by being executed as workflows as opposed
to being executed sequentially on a single processor. For T2, the benefits of
grid workflow execution are much more visible, with quantile Q1, the median,
and the average well above 1. Over 75% of the large and flat workflows were
able to achieve a speed up higher then 15. About 50% of the large workflow
runs gained a speedup of 9 and higher.

200 COREGRID SYMPOSIUM

Figure 6: The distribution of the speed-up of the workflows. (left) overall. (right) per workflow
class.

Figure 7: The distribution of the normalized schedule length of the workflows. (left) overall.
(right) per workflow class.

Figure 8: The distribution of the success rate of the workflow tasks. (left) overall. (right) per
workflow class.

Figure 7 shows the CDF of the workflow normalized schedule length. The
NSL values confirm the findings regarding the speedup (given the high corre-
lation between the number of nodes and the number of edges). The average
NSL is 1.72 for T1 and 1.58 for T2. This shows that the system used for T2
has less overheads in total and will be able to execute workflows on the grid
more efficient. In the per class view, the large and flat workflows show special
behavior as there where runs with short tasks where the overheads account more
and longer runs where the total time could compensate the overheads.

Trace-Based Characteristics of Grid Workflows 201

Figure 8 shows the CDF of the workflow success rate. The percentage of
workflows with a higher success rate then 98% are 65%, respectively 75% for
trace T1 and T2. The large and branchy workflows for T1 have reached a
success rate of 97% for even 89% of their runs while the large and flat only get
more then 95% success rate for 60% of the traced workflows.

5. Related Work

There exists a lot work related to workload analysis and modeling for testing,
tuning, and resource management design purposes [6, 13, 15, 14, 9, 8, 10].

Following the seminal work of Feitelson [6], several models for workloads of
large computing environments have emerged [15, 14]; a comparative analysis
of the characteristics of workloads from production grid environments is first
presented in [8]. However, none of these research results is targetting work-
flows. Iosup et al. [10] present an investigation of the properties of batches of
jobs (a degenerate case of workflows that is popular in today’s grids) in grids.

Synthetic workloads have been used to test functionality in real and simulated
environments; most of workflow engines have been tested with such workloads.
Workflows from the Standard Task Graphs online archive have been reportedly
used to test the ability of a multi-cluster grid to execute workflow workloads [9].

Closest to our work, Kwok and Ahmad propose four models of workflows
used for testing in simulation traditional workflow scheduling algorihtms [13].
From these models, one model consists of pathological cases identified by
scientists for the purpose of stressing their algorithms, two are synthetic models,
and only one is extracted from real workloads. The latter models the flow of two
parallel applications. Our analysis presents results that complement this latter
model with a much broader application selection base (the real workload traces),
and for which we can show the environment-related characteristics of executing
these workloads in a real heterogeneous environment (including failures). We
also add the workflow task work size as a parameter to model.

6. Conclusion and Ongoing Work

Realistic data concerning the characteristics of workflow-based grid work-
loads is key to the adoption and the evolution of grids, but is not readily available
to scientists. To address this issue, in this work we present the characteristics
of two long-term traces from the Austrian Grid, a grid environment in which
workflows are common.

We introduce a method for analyzing such traces, then apply the method to the
two Austrian Grid traces. The method identifies two broad classes of workflow
characteristics, intrinsic and environment-related. Based on the observed values
for the former, we devise six classes of workflows with distinct properties. The
analysis of environment-related characteristics reveals that from the six classes

202 COREGRID SYMPOSIUM

several can be considered classes of ”problem-workflows”, which exhibit one
or all of high variability of the work size of their tasks, high makespan, poor
scalability, and higher than normal failure rate. Overall, we find that the work-
flow speedup is highly dependent on the system used for execution, and that the
current task success rate requires more fault tolerance mechanisms, especially
for large workflows.

We plan to extend our work with the analysis of other traces. In particular, we
hope to find traces that include mostly production workflows submitted by real
users. Based on these traces, we will be able to design a model for workflow-
based grid workloads. We conclude by addressing the whole grid community
with a request for making available their (workflow-based) grid workload traces
to other researchers.

Availability

The traces analyzed in this work are publicly available as part of the Grid
Workloads Archive at: http://gwa.ewi.tudelft.nl/

Acknowledgements

This work is supported by the European Union through IST-004265 and
IST-2002-004265 CoreGRID and partially carried out in the context of Virtual
Laboratory for e-Science project (www.vl-e.nl), supported by a BSIK grant
from the Dutch Ministry of Education, Culture and Science, and which is part
of the ICT innovation program Affairs. This work is co-funded by the European
Commission through the EGEE-II project INFSO-RI-031688.

References

[1] P. Blaha, K. Schwarz, and J. Luitz. WIEN2k, a full potential linearized augmented plane
wave package for calculating crystal properties. Austria 1999. ISBN 3-9501031-1-2.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press and McGraw-Hill Book Company, 1989.

[3] R. Duan, R. Prodan, and T. Fahringer. Dee: A distributed fault tolerant workflow enactment
engine for grid computing. In HPCC, volume 3726 of LNCS, pages 704–716. Springer-
Verlag, 2005.

[4] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. S. Jr., and H. L. Truong. ASKALON:
a tool set for cluster and grid computing. CP&E, 17(2-4):143–169, 2005.

[5] T. Fahringer, J. Qin, and S. Hainzer. Specification of grid workflow applications with
agwl: an abstract grid workflow language. In CCGrid, pages 676–685. IEEE CS, 2005.

[6] D. G. Feitelson and L. Rudolph. Metrics and benchmarking for parallel job scheduling.
In JSSPP, volume 1459 of LNCS, pages 1–24. Springer, 1998.

[7] J. L. Henning. Spec cpu2000: Measuring cpu performance in the new millennium. IEEE
Computer, 33(7):28–35, 2000.

Trace-Based Characteristics of Grid Workflows 203

[8] A. Iosup, C. Dumitrescu, D. Epema, H. Li, and L. Wolters. How are real grids used? the
analysis of four grid traces and its implications. InGRID, pages 262–269. IEEE CS, 2006.

[9] A. Iosup and D. H. J. Epema. Grenchmark: A framework for analyzing, testing, and
comparing grids. In CCGrid, pages 313–320. IEEE CS, 2006.

[10] A. Iosup, M. Jan, O. Sonmez, and D. Epema. The characteristics and performance of
groups of jobs in grids. In Euro-Par, LNCS. Springer-Verlag, August 2007.

[11] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling,. May 1991.

[12] E. G. C. Jr. and R. L. Graham. Optimal scheduling for two-processor systems. Acta Inf.,
1972.

[13] Y.-K. Kwok and I. Ahmad. Benchmarking and comparison of the task graph scheduling
algorithms. J. PDC, 59(3):381–422, 1999.

[14] H. Li, D. L. Groep, and L. Wolters. Workload characteristics of a multi-cluster supercom-
puter. In JSSPP, volume 3277 of LNCS, pages 176–193. Springer-Verlag, 2004.

[15] U. Lublin and D. G. Feitelson. The workload on parallel supercomputers: modeling the
characteristics of rigid jobs. J. PDC, 63(11):1105–1122, 2003.

[16] K. Plankensteiner. EE2: A high performance execution engine for scientific workflows
on Clusters and the Grid. U.Innsbruck, Master Thesis, 2008.

[17] J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid computing. ACM
SIGMOD Rec., 34(3):44–49, 2005.

[18] F. Nadeem, R. Prodan, and T. Fahringer. Optimizing Performance of Automatic Training
Phase for Application Performance Prediction in the Grid. In HPCC, pages 309–321,
2007.

CORE SERVICES FOR GRID MARKETS

Pablo Chacin∗, Xavier Leon, Rene Brunner, Felix Freitag and Leandro Navarro
{pchacin,xleon,rbrunner,felix,leandro}@ac.upc.edu
Computer Architecture Department,
Technical University of Catalonia, Spain

Abstract Markets are a powerful model for the coordination of distributed systems and,
in particular, in the face of incomplete information and changing environments.
The application of markets for the resource allocation in grid systems has re-
cently been researched as an alternative to traditional approaches. However,
the proper implementation of sophisticated markets capable of handling diverse
trading models (various auctions types, bargaining) and structures (direct negotia-
tion, brokering, etc.) requires a set of supporting services to provide participants a
proper environment to engage in negotiations. Grid Market Middleware (GMM)
is a framework that aims to ease the development of market based grid systems.
In this paper we present its architecture, the services it provides and describe
how they can be used to implement diverse market models. We also discuss our
experience with the implementation of prototypes for various core services.

Keywords: Grid Market, Economic Models, Middleware.

∗Corresponding author. Phone:+34(93)405 40 59, Fax:+34(93)401 70 55

206 COREGRID SYMPOSIUM

1. Introduction

Markets are decentralized, goal-oriented mechanisms for allocating resources
among competing interests while meeting some general goal, like the global
utility of the users. A distributed system set up along market rules can adapt
to changes in the environment, variations in the demand or supply of resource,
or disturbances to individual members [10]. Therefor, many projects have ex-
plored market approaches for resource allocation (See [24] for a recent survey).

Despite of this interest, there is a significant absence of general-purpose
frameworks to develop market oriented systems. Most of the proposed frame-
works are specific of a market model (e.g. a specific type of auctions) or problem
domain (e.g. logistic optimization, robotics), or are not suited for large scale
fully decentralized deployments.

The intent of the Grid Market Middleware project (GMM)1 is to provide such
a generic framework. More specifically, the GMM aims to address the problems
of a general infrastructure for decentralized markets, a scalable architecture and
a high level programming abstractions independent of the market model. This
work is based on our experience implementing market based resource alloca-
tion middleware for Application Layer Networks and its integration with grid
applications [5, 13], and in our ongoing effort to implement the foundations for
a grid market in the context of the SORMA2 and Grid4All3 European projects.

In this paper we present the design of the GMM’s core services and how
they can be used to implement diverse market models. The document is orga-
nized as follows: section 2 presents the general model of a GMM based grid
market. Section 3 presents the general architecture and introduces its main
components. Section 4 shows how diverse market models can be implemented
using the GMM. Finally, section 5 presents some related work and 6 presents
our conclusions and future work.

2. Model

The general model of a GMM based grid market can be seen infigure 1. In this
model, we differentiate three main components: (a) participants, which engage
in economic exchanges to sell/buy/allocate resources, (b) the Economically
Enhanced Resource Managers (EERM), which manage those resources and (c)
Core Services that provides generic support functionalities for market oriented
systems and a programming interface that facilitates the implementation of the
participants and the EERM.

1http://recerca.ac.upc.edu/gmm
2http://www.sorma-project.eu
3http://www.grid4all.eu

Core Services for Grid Markets 207

Figure 1: Model for a GMM based grid market.

Participants are agents (in the general sense) that act on behalf of resource
providers, resource consumers, or mediate between them. Participants are re-
sponsible for gathering and evaluating market information and deciding their
strategies to sell/buy (e.g. pricing). GMM does not make any special distinction
among sellers and buyers. This is important to allow a participant to become
an intermediary, buying resources and then reselling them and behave as a me-
diator (broker, arbiter) or a market maker which improves the scalability of the
market and improves its liquidity [4].

Markets require a resource allocation mechanism [11], a protocol to allocate
resources among participants. This mechanism can be embedded in the buyers
and sellers themselves (when they use direct bargaining or single side auctions
for trading) or might also be run as a separate participant (when auctioneers are
used). GMM does not enforce any mechanism, but it does enforce the primitive
messages on which such mechanisms could be implemented. This unifies the
programming interface for agents and allows the application of policies at the
middleware level, such as content based routing and filtering.

The EERM provides the capabilities to access grid resources from the grid
market. It registers resources in the market and provides information about its
availability and relevant performance metrics, which is integrated with the mar-
ket information. EERM also serves as a gateway to access resources, verifying
that the intended access are backed by a previous agreement between the parties
(provider and consumer). The EERM is in large part platform dependent and
is therefore not provided by the GMM. However, the interfaces to integrate it
into the market are provided by the GMM.

3. Architecture

GMM’s architecture has been designed under two guiding principles: (a)
integrate under a common framework the services related to information gath-
ering and dissemination in decentralized market and (b) take advantage of the
functionalities provided by P2P overlays to organize a distributed system and

208 COREGRID SYMPOSIUM

Figure 2: Architecture of the GMM

allow efficient communications and decentralization. The resulting architecture
is arranged in four main layers:

• Core Market Services: market specific services that supports the de-
velopment of participants, enabling them to engage in negotiations for
resources.

• Distributed Information Services: generic services that allows an ef-
ficient management of information in fully decentralized deployments.
Offers services for processing queries and their responses, filtering mes-
sages, aggregating information and ensuring consistency and transac-
tional access to critical data.

• Overlay Services: provides sophisticated communication and coopera-
tion mechanisms like publish/subscribe, group casting, distributed stor-
age of data items (DHT), and replication of critical elements .

• KBR: offers a Key Based Routing mechanism to communicate different
nodes based on logical, location independent keys [7].

In this paper we focus on the components of the Core Services Layer, which
are explained below:

Exchange Service. Provides a trading infrastructure designed to support
different market-based systems. It defines a set of primitive messages that can
be used to implement complex negotiation protocols and provides transparent
message routing among participants. The utilization of these market primitives
allows the Market Exchange to accommodate different market models, even
simultaneously and ensures that the infrastructure can apply rules for routing,
validation and security. It also frees the participants from the need to validate
each received message.

Core Services for Grid Markets 209

Market Directory Service. Provides a decentralized, market wide registry
for participants of the market (providers, consumers) and the resources/services
being traded. It offers a generic framework on which diverse specialized strate-
gies can be plugged to adapt and optimize the discovery to the characteristics
such as the density of resources and its distribution in the network [12], and
support diverse query languages.

Market Information Service. Provides current aggregated information and
historical statistics of market indicators, under publish/subscribe and query in-
terfaces. Examples of such information are the level of activity in a market
(indicated by the number of available products and the volume of traded prod-
ucts) and the current maximum, minimum or average price for a resource type.
Trader agents will rely on this information to create or adapt their internal strat-
egy like choosing the right market to negotiate for resources, finding the right
time to enter or create markets, and to propose competitive bids.

Logging Service. Keeps a registry of the transactions occurred during a
particular negotiation, and maintains the negotiation state across restarts of
the Exchange Service. It can be used for accounting, dispute resolution and
security purposes. To achieve these goals, it offers a secure and reliable storage
of the messages that were exchanged during a negotiation. Transactions can
be retrieved using the negotiation id or the specific transaction id as a key.
More complex queries are not currently considered but can be implemented by
indexes which can be stored internally in the DHT Layer (following a model
similar to that of [9]) or in external repositories like relational databases.

Currency Service. Is a distributed banking service for the Grid which en-
ables users to perform and receive payments for resource usage and sharing
using a virtual currency (g-currency), without incurring in the cost of real pay-
ment mechanisms (fees and taxes). It can be used to control the behavior of
participants, offering incentives for providers to share their resources and for
clients to give a reliable valuation of their jobs. It also serves as an overall
regulation system, by restricting users with a limited purchase power leading
to price contention during peak demand periods

4. Implementing Markets

The Market Exchange Service is organized around the basic concept of Ex-
change Sessions, which are a gathering mechanism that allow participants to
engage in Negotiations to interchange Offers about the session’s underlying
subject (e.g. execution rights on a particular server) and potentially reach
Agreements. An Offer represents the terms that the participant proposes for
the negotiation. An Agreement is the confirmation that two parties agree on

210 COREGRID SYMPOSIUM

their mutual offers. Notice that session’s subject are abstracts, and can refer to
anything, from resources to be allocated to tasks to be executed.

The programming model for the Market Exchange Service is an asynchronous,
event based model. It is based on two interfaces: the session handler and the
negotiation handler. The combination of session and negotiation level handlers
offers a versatile framework to implement diverse negotiation control policies.
The participants obtain from an external source a reference to the session and
join it specifying a negotiation handler that will handle this negotiations events.

In the next sections we show how this programming model can be used
to implement two very different markets: a direct bargaining and an auction.
These examples were chosen to show the flexibility of the model.

4.1 Implementing bargaining

This scenario (see figure 3(a)) is the simplest one: one of the participants
starts a one-to-one negotiation with another participant creating a Session with
an initial offer. The owner and the participant then exchange a series of offers
until they both agree on the terms. The session handler can be used to imple-
ment an admission policy, to control, for example, that there is only one active
negotiation at a time.

4.2 Implementing a double auction

In a double side auction (see figure 3(b)), the auctioneer doesn’t make offers,
but is just a facilitator that matches the offers sent by participants. These
participants play complementary roles, such as sellers and buyers (as in the
example below) or task requesters and task executors. This market is therefore
a many-to-many negotiation. At the closing time, the auctioneer looks at all
the offers and matches them according to an optimization criterion. When it
finds a pair of matching offers, it exchanges the offers of the participants. For
example, it sends the sellers offer to the buyer and vice versa. This causes two
agreements to be formed between seller and buyer (one seller-buyer and the
other buyer-seller), but those agreements are identical to any purpose.

5. Related Work

There are, to our knowledge, few generic frameworks for developing grid
markets. GridBus [3] is framework which provides a set of tools for the de-
velopment, execution and management of grid applications using economic
mechanisms. The main difference with GMM is that GridBus relies on the
meta-scheduler model, on which users submits jobs (using a portal) to a eco-
nomic scheduler which takes the allocation decisions based on the user supplied
information, including budget. This model is more appealing for commodity
markets. GMM, on the other hand, supports this model (even when it does

Core Services for Grid Markets 211

(a) Bargaining (b) Double Auction

Figure 3: Implementation Markets

not provides a meta-scheduler) but also allows more open setups on which
users submits jobs through agents that negotiate in one or more markets, better
accommodating non commodity markets.

There has also been an important work in the development of market based
agents in general [22] and for grid resource negotiation in particular [18–19].
However, these works generally focused on how to achieve desirable character-
istics on individual agents (the strategies) or the negotiation protocols (the mar-
ket mechanisms), but paid little attention to the infrastructure actually needed
to run a market for grid resources. GMM is intended to provide such infras-
tructure and facilitate the transition from prototype to actual utilization in real
grid environments of such agents.

With respect of the individual components of the GMM, we briefly summa-
rize some relevant work below.

Exchange. OCEAN [15] is a software infrastructure to automated commer-
cial resource exchange over the Internet. It offers an optimized P2P search
protocol to find a set of potential sellers and the automatic negotiation of those
resources based on rules defined in a XML format. The ability to define negotia-
tion rules is a remarkable characteristic of OCEAN that allows the adaptation of
the economic model to diverse applications. PeerMart [8] implements double
auction over a P2P overlay network to distribute the auctioneer onto a clusters of
peers, each being responsible for brokering several services. Its main limitation
is the tightly integration of auction models in the framework.

Directory. The Grid Market Directory [25] is a SOAP based service which
relies on a centralized repository and offers a simple matchmaking capability
suited for undifferentiated commodities. The GMM’s Market Directory, on the
other hand, is fully decentralized and is designed to support non-commodity,
specialized resources. DyMRA [14] considers a decentralized, DHT based,

212 COREGRID SYMPOSIUM

Market Directory but it does not naturally supports complex multi-attribute and
range queries needed in grid environments, even when those can be achieved
extending its DHT’s basic mechanisms [17].

Information. The Market Information Service integrates a publish-subscribe
model with aggregation, filtering of routing messages, an important issue ad-
dressed in modern P2P systems. Systems like SDIMS [23] and Willow [16] uses
DHTs specifically designed for this purpose. GMM’s MIS, in the other hand,
is built on top of a generic, unmodified DHT, which facilitate porting it to other
DHT infrastructures. It also provides flexibility through a simple API that lets
applications control propagation of queries and the aggregation of data.

Logging. [21] introduce publish/subscribe transactions for atomic produc-
tion, delivery, and processing of asynchronous event notifications. As a general
transaction management service, it incurs in a considerable overhead to main-
tain the atomicity of transactions. GMM’s Logging, in the other hand, has
been optimized to maintain a reliable log of activities under the control of a
single Exchange Service instance. Distributed Log Service (DiLoS) [1] as-
signs log files within a given scope (for type of service, geography, hierarchy,
etc.) to a service instance, which stores it and disseminate to other instances
in other scopes for redundancy. Its main drawback is the static organization of
the services in scopes, while the GMM’s Logging Service uses DHT’s intrinsic
characteristics to fulfill this requirements transparently and dynamically.

Currency. In PeerMint [8] and Karma [20] the bank role is distributed
among a set of untrusted peers which conform the whole system, using proto-
cols to overcome malicious peer’s interferences and achieve consistency. Both
systems suffer of performance and scalability issues due to the overhead gener-
ated by their reliable protocols. GridBank [2] is a centralized bank extensible to
whatever kind of payment deployed in e-commerce. It implements a resource
usage mechanism by means of RURs (Resource Usage Record) which helps in
the task of accounting what resources have been consumed by which users. Its
scalability and efficiency is questionable due to its centralized architecture.

6. Conclusions and Future Work

The Grid Market Middleware provides a number of core services for building
sophisticate market mechanisms in Grids. Its main contribution is the simpli-
fication of the development of market based resource allocation mechanisms,
without imposing restriction in the market models being used or the implemen-
tation of agent’s strategies. In this paper we have shown how different market
models such as bargaining and auctions can be implemented upon the GMM.

Core Services for Grid Markets 213

GMM’s architecture takes advantage of overlay networks to support fully
decentralized market models and achieve scalability and tolerance to failures
and changes in the application level network topology. This way we address
two main limitations of existing market based approaches: its centralization
and inadequacy to open, continuously evolving environments.

We have implemented prototypes of various GMM services (exchange, cur-
rency, information, directory) and our initial experiences show that they greatly
simplify the implementation of diverse market based resource allocation mech-
anisms. The prototypes were initially implemented separately, as part of the
diverse projects we have been engaged. As we have learned more about both
their particular traits and common ground, we have started to integrate them
under the architecture shown in this paper, although there are several secondary
issues to resolve such as the use of diverse overlays, each suited to the service’s
particular needs. As has also been noted in [6], one of the main challenges
is how to implement the services using only a generic overlay infrastructure,
without harming its performance.

Future work on the GMM also includes the development of high level pro-
gramming models and abstractions to ease the development of participant
agents, hiding most of the actions in the process of searching, ranking and
negotiation with other agents, and making them policy based.

Acknowledgments

This work was supported in part by the European Union under contracts
Grid4All EU IST-FP6-034567 and SORMA EU IST-FP6-034286, and the the
Ministry of Education and Science of Spain under Contract TIN2007-5614-
C03-01 (P2P-GRID).

References
[1] C. de Alfonso, M. Caballer, J. V. Carrin and V. Hernndez. Distributed General Logging

Architecture for Grid Environments. In High Performance Computing for Computational
Science Conference: Selected and invited papers, LNCS 4395, 2007.

[2] A. Barmouta and R. Buyya. Gridbank: a grid accounting services architecture for dis-
tributed systems sharing and integration. In Parallel and Distributed Processing Sympo-
sium, April 2003.

[3] R. Buyya and S. Venugopal. The Gridbus toolkit for service oriented grid and utility
computing: an overview and status report. 1st IEEE International Workshop on Grid
Economics and Business Models (CECOM), 2004

[4] Bai, X., Sivoncik, K., Turgut, D., Boloni, L. Grid Coordination with Marketmaker Agents.
International Journal of Computational Intelligence, 3(2), 2006

[5] P. Chacin, F. Freitag, L. Navarro, I. Chao, O. Ardaiz. Integration of Decentralized Eco-
nomic Models for Resource Self-Management in Application Layer Networks. Second
IFIP TC6 International Workshop on Autonomic Communications, Athens, Greece, Oc-
tuber 3-5, 2005

214 COREGRID SYMPOSIUM

[6] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker, J. Hellerstein. A
case study in building layered DHT applications. Proceedings of the 2005 Conference on
Applications, technologies, Architectures, and Protocols for Computer Communications,
2005

[7] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, I. Stoica. Towards a Common API for
Structured Peer-to-Peer Overlays. 2nd International Workshop on Peer-to-Peer Systems,
LNCS 2735, 2003

[8] D. Hausheer, B. Stiller. PeerMart: The Technology for a Distributed Auction-based Market
for Peer-to-Peer Services. 40th IEEE International Conference on Communications (ICC
2005), Seoul, Korea, May 2005.

[9] R. Huebsch, J.M. Hellerstein, N. Lanham, B.T. Loo, S. Shenker and I. Stoica. Querying
the internet with PIER. Proceedings of the 29th international conference on Very large
data bases, 2003

[10] B. A. Huberman and T. Hogg. Distributed Computation as an Economic System. Journal
of Economic Perspectives, 9(1):141-152, 1995.

[11] Hurwicz, L. The Design of Mechanisms for Resource Allocation. TheAmericanEconomic
Review, 63(2), 1973

[12] A. Iamnitchi, I. T. Foster On Fully Decentralized Resource Discovery in Grid Environ-
ments. Proceedings of the Second International Workshop on Grid Computing, p.51-62,
2001

[13] L. Joita, O.F.Rana, P. Chacin, I. Chao, F. Freitag, L. Navarro, O. Ardaiz. Application
Deployment on Catallactic Grid Middleware. IEEE Distributed Systems Online 7(12),
Dec. 2006

[14] D. Lzaro, X.Vilajosana and J. M. Marqués. DyMRA: Dynamic Market Deployment for
Decentralized Resource Allocation. On the Move to Meaningful Internet Systems Work-
shops, LNCS vol 4805, 2007

[15] P. Padala, C. Harrison, N. Pelfort, E. Jansen, M. P Frank and C. Chokkareddy. OCEAN:
The Open Computation Exchange and Arbitration Network, A Market Approach to Meta
computing. In proceedings of the International Symposium on Parallel and Distributed
Computing (ISPDC’03), Oct 2003

[16] R. van Renesse and A. Bozdog. Willow: Dht, aggregation, and publish/subscribe in one
protocol. In Proceedings Third International Workshop on Peer-To-Peer Systems, LNCS
3279, 2004.

[17] J. Risson and T. Moors. Survey of research towards robust peer-to-peer networks: search
methods. Computer Networks: The International Journal of Computer and Telecommu-
nications Networking, Vol 50(17). 2006.

[18] Kwang Mong Sim. From market-driven agents to market-oriented grids (position paper).
ACM SIGecom Exchanges, Vol. 5(2). 2004.

[19] H. Tianfield. Towards agent based grid resource management. Proceedings of Fifth IEEE
International Symposium on Cluster Computing and the Grid (CCGrid’05). 2005

[20] V. Vishnumurthy, S. Chandrakumar, and E. Sirer.Karma: A secure economic framework.
In Proceedings of the Workshop on the Economics of Peer-to-Peer Systems, June 2003.

[21] L. Vargas, L.I. W. Pesonen, E. Gudes, J.Bacon. Transactions in Content-Based Publish/-
Subscribe Middleware. 27th International Conference on Distributed Computing Systems
Workshops, 2007

Core Services for Grid Markets 215

[22] . M.P. Wellman.Market-Aware Agents for a Multiagent World. Proceedings of the 8th
European Workshop on Modelling Autonomous Agents in a Multi-Agent World. LNCS
Vol. 1237. Springer, 1997.

[23] P. Yalagandula and M. Dahlin. A scalable distributed information management system.
SIGCOMM Computer Communications Review, 34(4):379-390, 2004.

[24] C. S. Yeo and R. Buyya. A Taxonomy of Market-based Resource Management Systems for
Utility-driven Cluster Computing.Software:Practice andExperience (SPE), 36(13):1381-
1419, Wiley Press, New York, USA, Nov. 2006.

[25] J. Yu, S. Venugopal and R. Buyya. A Market-Oriented Grid Directory Service for Publi-
cation and Discovery of Grid Service Providers and their Services. The Journal of Super-
computing, 36(1), Springer, 2006.

D. Barbalace, C. Lucchese, C. Mastroianni, S. Orlando, D. Talia

DEIS, University of Calabria, Rende, Italy
ISTI, C.N.R., Pisa, Italy
ICAR, C.N.R., Rende, Italy
Department of Computer Science, University of Venice, Italy

barbalace@si.deis.unical.it, c.lucchese@isti.cnr.it, mastroianni@icar.cnr.it, orlando@dsi.unive.it,

talia@deis.unical.it

Abstract Several kinds of scientific and commercial applications require the execution
of a large number of independent tasks. One highly successful and low cost
mechanism for acquiring the necessary compute power for these applications is
the “public-resource computing”, or “desktop Grid” paradigm, which exploits the
computational power of private computers. So far, this paradigm has not been
applied to data mining applications for two main reasons. First, it is not trivial
to decompose a data mining algorithm into truly independent sub-tasks. Second,
the large volume of data involved makes it difficult to handle the communication
costs of a parallel paradigm. In this paper, we focus on one of the main data
mining problem: the extraction of closed frequent itemsets from transactional
databases. We show that is possible to decompose this problem into independent
tasks, which however need to share a large volume of data. We thus introduce a
data-intensive computing network, which adopts a P2P topology based on super
peers with caching capabilities, aiming to support the dissemination of large
amounts of information. Finally, we evaluate the execution of our data mining
job on such network.

Keywords: Public Resource Computing, Desktop grids, Data Mining, Closed Frequent Item-
sets, Peer-to-Peer Computing

COMPUTING FOR DISTRIBUTED DATA MINING
MINING@HOME: PUBLIC RESOURCE

218 COREGRID SYMPOSIUM

1. Introduction

In this work we aim to explore the opportunities offered by the volunteer
computing paradigm for making feasible the execution of compute-intensive
data mining jobs that have to explore very huge data sets.

On the one hand, during recent years, volunteer computing has become a
success history for many scientific applications. In fact, Desktop Grids, in the
form of volunteer computing systems, have become extremely popular as a
mean to garnish many resources for a low cost in terms of both hardware and
manpower. Two of the popular volunteer computing platforms available today
are BOINC and XtremWeb.

BOINC [2] is by far the most popular volunteer computing platform available
today, and to date, over 5 million participants have joined various BOINC
projects. The core BOINC infrastructure is composed of a scheduling server
and a number of clients installed on users’ machines. The client software
periodically contacts a centralized scheduling server to receive instructions for
downloading and executing a job. After a client completes the given task, it
then uploads resulting output files to the scheduling server and requests more
work. The BOINC middleware is especially well suited for CPU-intensive
applications but is somewhat inappropriate for data-intensive tasks due to its
centralized nature that currently requires all data to be served by a group of
centrally maintained servers. BOINC was successfully used in projects such as
Seti@home, Folding@home, and Einstein@home.

XtremWeb [4][7] is another Desktop Grid project that, like BOINC, works
well with “embarrassingly parallel” applications that can be broken into many
independent and autonomous tasks. XtremWeb follows a centralized architec-
ture and uses a three-tier design consisting of a worker, a coordinator, and a
client. The XtremWeb software allows multiple clients to submit task requests
to the system. When these requests are dispensed to workers for execution, the
workers will retrieve both the necessarily data and executable to perform the
analysis. The role of the third tier, called the coordinator, is to decouple clients
from workers and to coordinate tasks execution on workers.

On the other hand, due to the exponential growth of the information society,
data mining applications need to deal with larger and larger amounts of data, so
that, in the future, they will likely become large scale and expensive data analysis
activities. However, the nature of data mining applications is very different
from usual “@home” applications. First, they are not easily decomposable
into a set of small independent tasks. Second, they are data-intensive, that is
any sub-task needs to work an a large portion of data. These two issues make
it very challenging to distribute sub-tasks to volunteer clients. In fact, neither
BOINC or XtremWeb does utilize ad hoc algorithms for the propagation of large
amounts of data. Nevertheless, we believe that data mining may take advantage

Mining@home: Public Resource Computing for Distributed Data Mining 219

of a volunteer computing framework in order to accomplish complex tasks that
would be otherwise intractable.

In this paper we focus on the closed frequent itemsets mining problem
(CFIM). This requires to extract a set of significant patterns from a transac-
tional dataset, among the ones occurring not less than a user defined threshold.

We also introduce a novel data-intensive computing network, which is able
to efficiently carry out our mining task by adopting a volunteer computing
paradigm. The network exploits caching techniques across a super-peer net-
work to leverage the cost of spreading large amounts of data to all the computing
peers.

Some previous efforts aimed at exploiting Grid functionalities and services to

when performing data analysis. In those systems, a set of data mining tasks
can be distributed across several machines in an ad-hoc environment. How-
ever, they do not use any decentralized or peer-to-peer technique to improve
scalability and fault-tolerance characteristics.

We used an ad hoc simulator, fed with statistics concerning a real CFIM
application, in order to evaluate our data-intensive computing network. To the
best of our knowledge, this is the first time that the deployment of a complex
data mining task over a large distributed peer-to-peer network is shown to be
effective.

2. Parallel Mining of Closed Frequent Itemset

Frequent Itemsets Mining (FIM) is a demanding task common to several
important data mining applications that look for interesting patterns within
databases (e.g., association rules, correlations, sequences, episodes, classifiers,
clusters). The problem can be stated as follows. Let I = {a1, ..., aM} be a
finite set of items or singletons, and let D = {t1, ..., tN} be a dataset containing
a finite set of transactions, where each transaction t is a subset of I . We call
k-itemset a set of k items I = {i1, ..., ik | ij ∈ I}. Given a k-itemset I , let
σ(I) be its support, defined as the number of transactions in D that include
I . Mining all the frequent itemsets from D requires to discover all the itemsets
having a support greater or equal to a given minimum support threshold σ. We
denote with L the collection of frequent itemsets, which is indeed a subset of
the huge search space given by the power set of I .

State-of-the-art FIM algorithms visit a lexicographical tree spanning over
such search space, by alternating candidate generation, and support counting
steps. In the candidate generation step, given a frequent itemset X of |X|
elements, new candidate (|X|+ 1)-itemsets Y are generated as supersets of X
that follow X in the lexicographical order. During the counting step, the support

support distributed data mining algorithms. Grid Weka [8] and Weka4WS [10]
extend the Weka toolkit to enable the use of multiple computational resources

220 COREGRID SYMPOSIUM

Figure 1: Lexicographic spanning tree of the frequent itemsets, with closed item-
sets and their equivalence classes, mined with σ = 1 from the dataset D =
{{B, D}, {A, B, C, D}, {A, C, D}, {D}}.

of such candidate itemsets is evaluated on the dataset, and if some of those are
found to be frequent, they are used to re-iterate the algorithm recursively.

The collection of frequent itemsets L extracted from a dataset is usually very
large. This makes the task of the analyst hard, since he has to extract useful
knowledge from a huge amount of patterns, especially when very low minimum
support thresholds are used. The set C of closed itemsets [11] is a concise and
lossless representation of frequent itemsets that has replaced traditional patterns
in all the other mining tasks, e.g. sequences and graphs.

Definition 1 An itemset I is said to be closed iff

c(I) = f(g(I)) = f ◦ g(I) = I

where the composite function c = f ◦ g is called Galois operator or closure
operator, and the two functions f ,g are defined as follows:

f(T) = {i ∈ I | ∀t ∈ T, i ∈ t}, g(I) = {t ∈ D | I ⊆ t}
The closure operator defines a set of equivalence classes over the lattice of

frequent itemsets: two itemsets belong to the same equivalence class iff they
have the same closure, i.e. they are supported by the same set of transactions.
Closed itemsets are the maximal elements of these equivalence classes (see
Fig. 2).

It comes from Definition 1 that it is not easy to find the closure of a pattern:
either we need a global knowledge of the dataset or a global knowledge of the
collection of frequent itemsets and their equivalence classes. For this reason, it
is not easy to desing a parallel CFIM algorithm.

The first algorithm for mining closed itemsets in parallel, MT-Closed [9],
was proposed very recently. Analogously to other CFIM algorithms, MT-

Mining@home: Public Resource Computing for Distributed Data Mining 221

Closed executes two scans of the dataset in order to initialize its internal data
structures. A first scan is needed to discover frequent single items, denoted with
L1. During a second scan, a vertical bitmap representing the dataset is built by
considering frequent items only. The resulting bitmap has size |L1| × |D| bits,
where the i-th row is a bit-vector representation of the tid-list g(i) of the i-th
frequent item.

The kernel of the algorithm consists in a recursive procedure that exhaustively
explores a subtree of the search space given its root. The input of this procedure
is a seed closed itemset X, and its tid-list g(X)1. Initially, X = c(∅), and
g(X) = D. Similarly to other CFIM algorithms, given a closed itemset X,
new candidates Y = X ∪ i are created according to the lexicographic order. If
a candidate Y is found to be frequent, then its clusure is computed and c(Y) is
used to continue the recursive traversal of the search space.

Every single closed itemset X can be thought as the root of a sub-tree of the
search space which can be mined independently from any other (non overlap-
ping) portion of the search space. Note that this is a peculiarity ofMT-Closed.
We refer to J = 〈X, g(X),D〉 as a job description, since it identifies a given
sub-task of the mining process.

Thus, it is possible to partition the whole mining task into independent re-
gions, i.e. sub-trees of the search space, each of them described by a distinct job
descriptor J . One easy strategy would be to partition the search space according
to frequent singletons. We would obtain |L1| independent jobs. Unfortunately,
especially with dense datasets, it is very likely that one among such jobs has a
computational cost that is much higher than all the others.

Among the many approaches to solve this problem, an interesting one is [5].
First the costs of the jobs associated with the frequent singletons are estimated
by running a mining algorithm on significant samples of the dataset. Then, the
most expensive jobs are split on the basis of the 2-itemsets they contain.

In our setting, we are willing to address very large datasets. In this case, the
large number of resulting samplings to be performed and their costs make the
above strategy not suitable. Therefore, our choice is to avoid any expensive
pre-processing.

First, in order to obtain afine-grained partitioning of the search space, we will
materialize jobs on the basis of the 2-itemsets in the cartesian product L1×L1.
This produces a large number of jobs and sufficient degrees of freedom to evenly
balance the load among workers.

Second, we will consider the opportunity to group together jobs, when their
number is too large. Notice that a set of 1,000 frequent singletons results in
about 500,000 jobs. Since such a large number of jobs will introduce a large

1The input should also include the set of items used to calculate closures, which is not described here because
of space constraints. Please refer to [9].

222 COREGRID SYMPOSIUM

overhead, we will group together k consecutive jobs, where k is a system-wide
configuration parameter. We group together two consecutive jobs only if they
share the same prefix. For instance, {ab} and {ac} may be grouped together,
while {az} and {bc} may not.

The reason for this constraint is given by the partitioning optimizations usu-
ally adopted in mining algorithm that we want to use in our caching strategies.
Suppose that a job corresponds to the mining of all the itemsets beginning with
the a given item i: then any transaction that does not contain i can safely be
disregarded. This technique significantly reduces the amount of data to be pro-
cessed by a single job. This also explains why we only group 2-itemsets having
the same prefix: we group jobs together only if the share the same projection
of the data.

This data projection approach is very important in our framework. We can
reduce the amount of data needed to accomplish a given job, and therefore the
amount of data to be sent through the netowork.

3. A Data-Intensive Computing Network

We already proposed a preliminary framework for data dissemination suit-
able scenarios (e.g., processing of astronomical waveforms, analysis of audio
files [1]) in which the partition of an application into independent jobs is trivial
and the input dataset is the same for all the tasks. Here, the algorithm is adapted
for the CFIM data mining problem, in which the specification of independent
jobs is obtained through the MT-Closed algorithm and the input dataset may
be different for different jobs.

Our algorithm exploits the presence of a super-peer network for the assign-
ment and execution of jobs, and adopts caching strategies to make the data
distribution more efficient. Specifically, it exploits the presence of different
types of nodes that are available within a super-peer topology, as detailed in the
following:

• the Data Source is the node that stores the entire data set that must be
analyzed and mined.

• the Job Manager is the node in charge of decomposing the overall data
mining application in a set of independent tasks, according to the MT-

Closed algorithm. This node produces a job advert document for every
task, which describes its characteristics and specifies the portion of the
data needed to complete the task. This node is also responsible for the
collection of output results.

• the Miners are the nodes that are available for job execution. A miner
first issues a job query and a data query to retrieve the a job and the
corresponding data.

Mining@home: Public Resource Computing for Distributed Data Mining 223

• Data-Cachers are super-peers having the additional ability to cache data
and the associated data adverts. Data cachers can retrieve data from the
data source or other data cachers, and later provide such data to Miners.

• Super-Peers nodes constitute the backbone of the network. Miners con-
nect directly to a Super-Peer, and Super-Peers are connected with one
another through a high level P2P network. Super-peers play the role
of rendezvous nodes, i.e. meeting places for job or data providers and
consumers. They match Miners’ queries with job and data adverts.

In order to execute our data mining algorithm, the network works as follows
(see Fig. 2). A set of job adverts are generated by the Job Manager node. A job
advert corresponds to the job descriptor discussed in the previous section. An
available miner M issues a job query (step 1), that travels across the super-peer
interconnections, to the Job Manager. A matching job advert is sent back to
M (setp 2). Thanks to the job advert, the miner is also informed of the data
necessary to complete its job. Thus, it issues a data query to discover a Data-
Cacher (step 3). Since multiple Data-Cachers may answer (step 4), the miner
selects the nearest one and gives it the responsibility to retrieve the required
input data. In our example, the selected Data-Cacher DC1 (step 5) does not
hold the data neede by M , and issues a query to the data source DS or to the
other Data-Cachers (step 6). Eventually, DC1 retrieves the data from DS (step
7), stores it and provides it to the miner M (step 8). In the future, DC1 will be
able to provide the same data to other miners or to other Data-Cachers. Finally,
the miner M executes the job.

Our implementation includes a number of techniques that can speed up the
execution, depending on the state of the network and the dissemination of data.
For example, in the case that the cacher DC1 has already downloaded data, steps

Figure 2: Caching algorithm in a sample super-peer network.

224 COREGRID SYMPOSIUM

6 and 7 are unnecessary. Also, once a Miner has discovered the Job Manager
or a Data-cacher, it could decide to contact them directly without paying the
cost of sending a message across the Super-Peers network. More interestingly,
a miner may have the ability to store some data. In the following, we discuss
this aspect and introduce two possible caching scenarios on the miner side.

The presence of data cachers helps the dissemination of data and can improve
the performance of the network. It is also useful to verify if miners themselves
could give a contribution to speed up computation, in the case that they have
the ability and they are willing to store some input data (in general, the public
resource computing paradigm does not require hosts to store data after the
execution of a job). In fact, it often happens that the input data of a job overlaps,
completely or partially, with the input data of another job executed previously.
Therefore, the miner could retrieve the whole data set when executing the first
job, and avoid to issue a data query for the subsequent job. On the other hand,
if miners have no storage capabilities, they have to download the associated
input data for each job they have to execute. Therefore, two different caching
strategies have been analyzed and compared:

• Strategy #1: miners cannot store data. The miner downloads from the
data cacher only the portion of the data set that it strictly needs for job
execution, and discards this data after the execution.

• Strategy #2: miners can store data. The miner downloads from the
data cacher the entire data set the first time that it has to execute a job.
Even though the miner will only use a portion of this data set, data will
be stored locally and can be used for successive job executions.

Depending on the application, these simple strategies may be significantly
improved. One possible approach could be to use the information present in
the job adverts, in order to retrieve only those transactions of the dataset that
the miner does not already store. Indeed, a wide range of opportunities is open.

4. Performance Evaluation

We used an event-based simulation framework (similar to that used in [1])
to analyze the performance of our super-peer protocol. In the simulation, the
running times of the jobs were obtained by actually executing the serial al-
gorithm MT-Closed on specific data, and measuring the elapsed times. To
model a network topology that approximates a real P2P network as much as
possible, we exploited the well known power-law algorithm defined by Albert
and Barabasi [3]. The bandwidth and latency between two adjacent super-peers
were set to 1 Mbps and 100 ms, respectively, whereas the analogous values for
the connections among a super-peer and a local miner were set to 10 Mbps and
10 ms. If during the simulation a node (e.g., a data source or a data cacher)
needs to simultaneously serve multiple communications (with different miners),

Mining@home: Public Resource Computing for Distributed Data Mining 225

10

20
30

50

100

200
300

500

1000

0 50 100 150 200 250

T
E

xe
c

(h
)

Number of miners

Strategy #1, Ndc=10
Strategy #2, Ndc=10

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

T
E

xe
c

(h
)

Number of data cachers

Strategy #1, Nminers=150

(a) (b)

Figure 3: (a) Running time vs. number of mining peers (10 data cachers). (b) Running time vs.
number of of data cachers (150 mining peers).

the bandwidth of each communication is obtained by dividing the downstream
bandwidth of the server by the number of simultaneous connections.

The input dataset used to measure the running times of the various MT-

Closed jobs is Synth2GB, which has about 1.3 millions transactions and 2.5
thousands distinct items, for a total size of 2 GB. It was produced by using the
IBM dataset generator. By running the algorithm with a minimum absolute
support threshold of 50,000, we obtained the info about 469,200 jobs, that were
later grouped by 100 to reduce the total number of jobs. The time needed to
complete the mining on a single machine was about ten hours. In order to
simulate a very expensive mining task, we multiplied the running time of each
job by a factor of 100. This is perfectly reasonable, since the time needed to
execute a job increases exponentially when decreasing the minimum support
threshold.

Figure 3(a) shows the overall running time on varying the number of mining
peers by using strategies #1 and #2, in case of 10 data cachers. It is worth noting
that, by using multiple distributed miners, the execution time decreases from
over 1000 hours to about 20 hours when exploiting strategy #1. With strategy
#2, according to which miners can store data in their own cache, the execution
time is further reduced. Each miner downloads the entire data set to execute
before executing the first job, and then reuses the data for all the following jobs.

The plot of Figure 3(a) also shows that when strategy #1 is adopted, an
appropriate number of miners is 150, since the overall time does not decrease
if additional miners are available. Of course, the “optimal” number of miners
strictly depends on the problem, which impact on data sizes and job processing
times.

Also the number of available data cachers has an important influence on
the overall execution time. To analyze this issue, in Figure 3(b) we report the

226 COREGRID SYMPOSIUM

execution time obtained with strategy #1 and 150 active miners, on varying the
number of data cachers. The execution time decreases as the number of data
cachers increases from 1 to 10, since miners can concurrently retrieve data from
different data cachers, thus decreasing the length of single download operations.
However, the execution time increases again as more than 10 data cachers are
made available. The main reason is that many of these data cachers retrieve
data directly from the data source, so that the downstream bandwidth of the data
source is shared among a large number of connections. Results show that the
time needed to distribute data to more than 10 data cachers is not compensated
by the time saved in data transfers from data cachers to miners. Therefore an
“optimum” number of data cachers can be estimated. This number is 10 in this
case, but in general depends on the application scenario, for example on the
number and length of the jobs to execute.

5. Conclusions

In order to test our volunteer network, we chose a very tough data mining task.
In particular, the extraction, in a reasonable time, of all the (closed) frequent
patterns from a huge database, with low minimum support. This is only feasible
if we can exploit a multitude of computing nodes, like those made available by
our volunteer network. Due to the features of the embarrassingly parallel tasks
obtained, which require to effectively distribute large sets of similar data to
the miner peers, we tested an efficient data distribution technique based on
cooperating super-peers with caching capabilities. The first simulated tests of
our network, for which we used parameters obtained from real runs of our data
mining application, are very promising.

Our approach for distributing large amounts of data across a P2P data mining
network, opens up a wide spectrum of opportunities. In fact P2P data mining a
recently gained lots of interest. Not only because of the computing power made
available by volunteer computing, but also because of new emerging scenarios,
such as sensor networks, where data are naturally distributed, and nodes of the
network are not reliable. Even if many P2P data mining algorithms, such as
clustering [6] and feature extraction [12], have been developed, still they suffer
the cost of data dissemination. Not only our approach alleviates this cost, but it
can easily deal with failure and load balancing problems. For these reasons we
believe that our proposed data-intensive computing network may be a bridge
towards P2P computing for other data mining applications dealing with large
amounts of data, e.g. web documents clustering, or dealing with a distributed
environment, e.g. analysis sensor data.

Many directions for future works are open. Among them, we can mention:
(i) the adoption of more advanced strategies to disseminate and cache data in
the P2P network, (ii) the use of the volunteer computing paradigm to solve even

Mining@home: Public Resource Computing for Distributed Data Mining 227

more challenging data mining problems and (iii) the testing of the presented
approach on a real distributed platform.

References

[1] Al-Shakarchi, E., Cozza, P., Harrison, A., Mastroianni, C., Shields, M., Talia, D., and Taylor,
I. (2007). Distributing workflows over a ubiquitous p2p network. Scientific Programming,
15(4):269–281.

[2] Anderson, D. P. (2004). Boinc: A system for public-resource computing and storage. In
GRID ’04: Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing
(GRID’04), pages 4–10.

[3] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science,
286(5439):509–512.

[4] Cappello, F., Djilali, S., Fedak, G., Herault, T., Magniette, F., Neri, V., and Lodygensky, O.
(2005). Computing on large-scale distributed systems: Xtrem web architecture, programming
models, security, tests and convergence with grid. Future Generation Computer Systems,
21(3):417–437.

[5] Cong, S., Han, J., and Padua, D. A. (2005). Parallel mining of closed sequential patterns. In
KDD ’05: Proceedings of the eleventhACMSIGKDD international conference onKnowledge
discovery in data mining, pages 562–567.

[6] Datta, S., Bhaduri, K., Giannella, C., Wolff, R., and Kargupta, H. (2006). Distributed data
mining in peer-to-peer networks. IEEE Internet Computing, 10(4):18–26.

[7] Fedak, G., Germain, C., Neri, V., and Cappello, F. (2001). Xtremweb: A generic global
computing system. In Proceedings of the IEEE Int. Symp. on Cluster Computing and the
Grid, Brisbane, Australia.

[8] Khoussainov, R., Zuo, X., and Kushmerick, N. (2004). A toolkit for machine learning on
the grid. ERCIM News No. 59.

[9] Lucchese, C., Orlando, S., and Perego, R. (2007). Parallel mining of frequent closed patterns:
Harnessing modern computer architectures. In ICDM ’07: Proceedings of the Fourth IEEE
International Conference on Data Mining.

[10] Talia, D., Trunfio, P., and Verta, O. (2005). Weka4ws: A wsrf-enabled weka toolkit for
distributed data mining on grids. In Proc. of the 9th European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD 2005), Porto, Portugal.

[11] Wille, R. (1982). Restructuring lattice theory: an approach based on hierarchies of concepts.
In Rival, I., editor, Ordered sets, pages 445–470, Dordrecht–Boston. Reidel.

[12] Wurst, M. and Morik, K. (2007). Distributed feature extraction in a p2p setting: a case
study. Future Gener. Comput. Syst., 23(1):69–75.

HLA COMPONENT BASED ENVIRONMENT FOR
DISTRIBUTED MULTISCALE SIMULATIONS

Katarzyna Rycerz
Institute of Computer Science, AGH, al. Mickiewicza 30,30-059 Kraków, Poland

kzajac@agh.edu.pl

Marian Bubak
Institute of Computer Science, AGH, al. Mickiewicza 30,30-059 Kraków, Poland
Academic Computer Centre – CYFRONET, Nawojki 11,30-950 Kraków, Poland

bubak@agh.edu.pl

Peter M.A. Sloot
Faculty of Sciences, Section of Computational Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

sloot@science.uva.nl

Abstract In this paper we present the Grid environment that supports application building
basing on a High Level Architecture (HLA) component model. The proposed
model is particularly suitable for distributed multiscale simulations. Original
HLA partly supports interoperability and composability of simulation models,
where interactions between modules (federates) in a simulation system (federa-
tion) are defined and set by federates themselves. On the contrary, in the proposed
component model the particular behavior of component and it’s interactions with
others are defined and set by an external module (e.g. builder) on the user request
which is more flexible and increases reusability of components. We also propose
to integrate our HLA component solution with the Grid which will allow users
working on distributed simulations to more easily exchange the models already
created. The focus of this paper is on design of the HLA component. We show
how to insert simulation logic into a component and make possible to steer from
outside its interactions with other components. Its functionality is shown on the
example of multiscale simulation of a stellar system.

Keywords: Components, Grid computing, HLA, distributed simulation

230 COREGRID SYMPOSIUM

1. Introduction

Environments supporting application building from existing software com-
ponents on the Grid are an interesting topic of research. In this paper we would
like to propose such environment oriented towards distributed simulations con-
sisting of modules of different time and space scale (multiscale). The paper
describes a High Level Architecture (HLA) component model that defines soft-
ware modules comprising application to be build.

We have choosen HLA [5] as it is a standard for large scale distributed
interactive simulations. and offers many advanced features specific for such
applications (like time, data and ownership management). There is an ongoing
research of making solutions provided by HLA more scalable and efficient in
distributed environments. One worth to be mentioned is a service oriented HLA
RTI (SOHR) framework [11], which provides the functionalities of an RTI as
Grid services and enables large scale distributed simulations to be conducted
on a heterogeneous Grid.

HLA also offers the ability of plugging and unplugging various simulation
models (also with different internal types of time management) to/from a com-
plex simulation system. Additionally, HLA introduces a uniform way of de-
scription of events and objects being exchanged between federates. Also, HLA
separates communication runtime infrastructure (RTI) from actual simulation.
All these features can be used to create HLA-based component model, where
components are independent simulation modules that can be dynamically joined
into a coherent whole. The difference between the component view proposed in
this paper and an original HLA approach is that the behavior of component and
it’s interactions are defined and set by an external module on the user request.
In original HLA, the interactions between federates in a federation are defined
and set by federates themselves. The proposed approach is more flexible and
increases reusability of components as it separates component developers from
the users wanting to set up particular distributed simulation system from ex-
isting components. It also differs from other popular component models (e.g.
CCA [1]), as the federates are not using direct connections. Instead, all fed-
erates within federation are connected together using HLA tuple space, which
they can use for interaction (e.g. subscribing and publishing events and data ob-
jects). The federates can also make use of advanced time management provided
by HLA, which is particularly useful for multiscale simulations.

In this paper we propose to build the Grid environment that will support
HLA component model. We are using Grid technology [7, 18], as it is oriented
towards joining geographically distributed communities of scientists working
on similar problems - this will allow users working on distributed simulations
to more easily exchange the models already created. Therefore, the attempt to
integrate HLA with new possibilities given by both Grid and component tech-

HLA Component Based Environment for Distributed Multiscale Simulations 231

nologies is a promising approach. As a Grid platform hosting HLA components
we have chosen H2O environment [7].

In this paper we focus on the design of HLA component itself. We show
how to insert simulation logic into a component and how to make it possible to
steer its interactions with other components from outside. The functionality of
the system is shown on the example of multiscale simulation of a dense stellar
system.

The approach described in this paper is directed to the users that want to create
new multiscale simulation systems from existing components or join their own
new component to the multiscale system. For the users that have they own HLA
application and want to run it almost unaltered efficiently using the Grid, we
suggest to apply the solution elaborated in our previous work [14], where we
have focused on execution management of existing legacy HLA applications
and the best usage of available Grid resources, which can be achieved by using
provided migration and monitoring services.

This paper is organized as follows: in Section 2 we outline related work, in
Section 3 we describe the HLA component model. Section 4 presents the idea
of the Grid support system for such model and the design and implementation of
a HLA component - the element of the designed system responsible for storing
simulation logic and enabling steering its interactions with others from outside
of it. Section 5 presents experiment with example multiscale simulation of a
dense stellar system. Summary and future plans are described in Section 6.

2. Related Work

Building application from existing software modules is a wide range topic.
This issue includes defining interoperable and reusable pieces of software –
services and component technologies. The most popular services standards
include Web Services [17] and its extension with stateful resources [18]. The
most important component standards are: Common Component Architecture
(CCA)[1] (with its implementations like XCAT[6] or MOCCA [8]), Fractal
[2] and its extension - Grid Component Model [10] (with its implementation
ProActive [13]). However, none of this models provides advanced features for
distributed multiscale simulations. In particular they do not support advanced
time management mechanism, which in our model is achieved by integrating
mechanism provided by HLA with component solutions. An important ap-
proach to using services and component technology to distributed simulations is
described in [3]. However, the proposed solution is addressed in general to dis-
tributed simulations, without special focus on multiscale simulations systems.
Another worth to be mentioned component framework for simulations [12] is
specifically designed for partial differential equations.

232 COREGRID SYMPOSIUM

3. HLA Component Model

As already mentioned in the previous Section, one of the important features
of HLA is the ability of plugging and unplugging pieces of functionality to/from
a complex application. In that sense it is possible to create a HLA–based com-
ponent model. Unlike popular component models (e.g. CCA [1]), the federates
are not using direct connections (e.g. in CCA one component is connected with
other component, when its uses port is connected with partner’s provides port).
Instead, all federates within federation are connected together using tuple space,
which takes care of sending the appropriate data from the publisher to the sub-
scriber. HLA also includes advanced time management mechanism that allows
to connect federates with different internal time management together. It is pos-
sible for federates to dynamically subscribe/unsubscribe and publish/unpublish
their data as well as dynamically change their use of time management. Ad-
ditionally, these decisions can not only be taken by the actual federate itself,
but also by other federate that can steer subscription/publication mechanism of
others.

All these features allow to think about a HLA component as about an entity
that can be joined to a set of other components (the set represents a federation)
and interact with them by publish/subscribe mechanism of exchanging data and
using HLA time management if necessary. If needed, each component can also
be executed independently of others. The presented model will be especially
useful for the applications that would benefit from HLA (mainly distributed
simulations). Because of advanced HLA time management facility that enables
to join components of different internal time management and scale, it would
be particularly useful for multiscale simulations, on which we would like to
focus.

The difference between a component view proposed in this paper and an
original HLA approach is that the particular behavior of component and it’s
interactions with others are defined and set by an external module on the user
request. This enables the user to create federations from federates developed
by others without changing their implementation. The particular federation, in
which a federate is going to take part, does not need to be defined by a federate
developer, but can be created later – from outside – in the process of setting
up distributed simulation system. Therefore the presented approach increases
reusability and composability of simulations.

4. Grid system supporting HLA components

In this paper we would like to propose a solution that would support the
HLA component model on the Grid. The user will be able to decide how
components will interact with each other (e.g. by setting up appropriate sub-
scription/publication and time management mechanism). The user also will be

HLA Component Based Environment for Distributed Multiscale Simulations 233

User Interface

Component
HLA

Component
HLA HLA

Component Component
Manager
Federation

Process
FederateFederate

Process Process
Federate

Builder
Description Repository

HLA ComponentsModel Description
Assembler

HLA RTI Communication

(e.g. RTIExec)

coordination
RTI

process

.

Figure 1: Grid system supporting HLA–based component model.

able to plug/unplug components and change nature of their interactions during
simulation runtime. Fig.1 shows the proposed support for HLA component
model (CompoHLA). Apart from the actual HLA communication level, there
is a Grid level consisting of following elements:
Builder – sets up a simulation system on behalf of the user. It uses Federation
Management Component to create federation and instructs HLA Components
to join it. It also can instruct chosen components to set appropriate time man-
agement mechanism and subscribe or publish chosen data objects or events.
HLA Component Description Repository – stores description of components
- including information about data objects and interactions that the component
can exchange with others (which is called Simulation Object Model), the type
of time management that makes sense for this component and additional infor-
mation that may be useful for the user that wants to set up multiscale system
(e.g. units of produced data, scale of simulation time, if rollback is possible,
how subscription for particular data affects simulation, average execution time
etc.).
Model Description Assembler - produces Federation Object Model needed to
start federation from given Simulation Object Models of components that will
comprise simulation system.
Federation Manager Component - manages whole federation on the compo-
nent level and sets up connection with coordination process for federations.
HLA Components – wrap actual functionality of federates into components
(described later in this section)

The relations between system elements is shown in the Fig.1. A user can use
the HLA Components Description Repository and the Model Description As-

234 COREGRID SYMPOSIUM

code with

compoHLA library

start/stop

join/resign

set time policy
H2O pluglet

publish

subscribe

simulation logic

.

Figure 2: Relationship between component’s developer code (simulation logic), HLA RTI
implementation and compoHLA library.

sembler to build a federation description and pass it to the Builder that sets up the
federation from appropriate HLA Components. The user than can dynamically
change nature of interactions between components using the Builder.
HLA Component in CompoHLA. As described in Section 3, a HLA compo-
nent should be able to be joined to/resigned from federation as well as be able to
react on user requests to subscribe/publish appropriate data and use time man-
agement mechanism if necessary. In this paper, we present HLA component
prototype that is designed as entity that can be requested to join the federation
and then to resign from it during component lifetime. Independently from being
joined/disjoined each component can be started and stopped during its lifetime.
In [16] we described how the user can change interactions (subscription/pub-
lication and time management) between components during lifetime. As a
Grid framework we have chosen the H2O [7] platform as it is lightweight and
enables for dynamic remote deployment. A HLA component is implemented
as a H2O pluglet having requests to start, stop, join, resign (described in this
paper) and requests to change publications, subscriptions as well as type of
time management (described in [16]). The component developer has to provide
a simulation logic code which is connected with a pluglet by interfacing the
compoHLA library as shown in the Fig.2. The purpose of compoHLA library
is to simplify use of HLA time management and data exchange mechanisms
for component developers. It also allows HLA component to be steered from
outside (by external requests as described above).

The more detailed relations in the form of a simplified class diagram between
HLA RTI, the compoHLA library and a developer code (simulation logic) are
shown in the Fig.3. The CompoHLA library introduces two classes with ab-
stract methods that should be overridden by component developer. One is a
CompoHLASimulator class, from which the developer has to inherit and point to
the main function starting a simulation. There is also a CompoHLADataObject
class that has to be inherited for each data object that is going to be published/-
subscribed by the federate and be visible outside for an external user (who
is going to chose this component to be connected to his simulation system).

HLA Component Based Environment for Distributed Multiscale Simulations 235

+check_stop()

+publish(object_class_name)

+subscribe(object_class_name)

+unset_time_policy()

+time_advance_request()

+get_current_time()

+set_time_policy()

+run simulation

+resign_and destroy_federation()

+create_and_join_federation()

CompoHLA Federate

HLA RTI

+register_instance()

+subscribe()

+publish()

CompoHLADataObject

+main_sim()

+get_CompoHLAFederate()

FederateAmbassador RTIAmbassador

CompoHLA Simulator

Simulator Implementation

DataObject Implementation

Simulation Logic

Ambassador Implementation

calls

CompoHLA Library

.

Figure 3: Simplified class diagram illustrating relations between crucial classes of HLA RTI,
compoHLA library and component developer code (simulation logic).

The developer has to specify how the actual simulation data fits into HLA data
objects that could possibly be exchanged with other federates.

The simulation developer can also call methods of a CompoHLAFederate
class which, in turn, uses HLA a RTIambassador class (main class providing
HLA services). The methods include getting info about federate time and
requests of time advance as well as checking if stop request came (in order to
perform final operations before the simulation exit).

236 COREGRID SYMPOSIUM

A developer has also to override FederateAmbassador class callbacks
(there are used by RTI to communicate with a developer code e.g. when re-
ceiving data from other federates) as in an original RTI federate. The use of
the compoHLA library does not free the developer from understanding HLA
time management and data exchange mechanisms, but simplifies use of them
and allows a HLA component to be steered from outside (by external requests
as described above).

5. Experiments with MUSE

For the purposes of this research we have used simulation modules of dif-
ferent time scale taken from Multiscale Multiphysics Scientific Environment
(MUSE)[9] for simulating dense stellar systems like globular clusters and galac-
tic nuclei. The original MUSE consists of the Python scheduler and three simu-
lation modules of different time scale: stellar evolution (in macro scale), stellar
dynamics (nbody simulation - in meso scale) and hydro dynamics (simulation
of collisions - in micro scale). Also, there are plans to add additional modules.
For the purposes of this paper, we have chosen to make components from two
MUSE modules: evolution (macro scale) and dynamics (meso scale) that run
concurrently. The simulation system has to make sure that dynamics will get
update from evolution before it actually passes the appropriate point in time.
The HLA time management mechanism [5] of regulating federate (evolution)
that controls time flow in constrained federate (dynamics) could be there very
useful.

In [15] we have compared sequential execution of chosen MUSE modules
with their distributed execution using HLA on the Grid. We have shown that
the such distribution can be beneficial for described application. In particular,
we have shown the usefulness of HLA advanced time management for this
kind of simulations. In this paper we would like to test mechanism that allows
HLA Components to be accessible to the external user wanting to set up the
simulation system from existing dynamics and evolution components created
by someone else.
Performance Results. We have created two prototype HLA components for
dynamics and evolution simulations and measured execution time of requests
to them. In our implementation we have used H2O v2.1 and HLA Certi im-
plementation v3.2.4. Experiments were done on Dutch Grid DAS3 [4]. The
RTI control process was run on Grid node at the Amsterdam Free University
the dynamics component at University of Amsterdam, the evolution component
at Delft, and the client was run at Leiden University. The bandwidth between
Grid sites is 10Gbps and latency (measured by ping) is around 2 ms.

We have tested following scenario: start dynamics – start evolution – join
dynamics to federation – join evolution to federation – resign dynamics – resign

HLA Component Based Environment for Distributed Multiscale Simulations 237

Request avr time, sec σ
start dynamics 0.008 0.001
start evolution 0.009 0.001
join dynamics 0.181 0.003
join evolution 0.52 0.08
resign dynamics 0.006 0.0004
resign evolution 0.007 0.0003
stop dynamics 0.3 0.2
stop evolution 0.2 0.2

Table 1: Time of HLA Component request execution for evolution and dynamics components
taken from MUSE [9]

evolution – stop dynamics – stop evolution. In [16] one can find results of
experiments with changing interactions – subscription/publication and time
management – between components during lifetime.

Tab.1 shows results of this experiment (average of 10 runs). σ indicates
standard deviation. In general, execution time of all requests are small. The
start, stop and resign requests are similar for both modules. However,
as we can see, realization of join request by second component is longer
then by first component. This can be explained by the fact that joining to the
federation that already have some members requires to make connections to
these members. These overhead depends on the HLA implementation, not the
design of the HLA component. Also performance of stop request requires
explanation. The request does not stop the simulation immediately, but sends
requests to the simulation and waits for it to check if that request came (we
would like to give the control to the component developer and let him to save
the results of a simulation, if necessary). Therefore, the execution time of stop
request can vary depending on this waiting time. This is illustrated by quite
large standard deviation. To summarize, execution times of all requests are
promising and show that component layer does not introduce much overhead,
but we have to have in mind factors independent on the HLA Component design
(overhead of particular HLA implementation and the frequency of checking if
the stop request came in the component developer code).

6. Summary and Future Plans

Our previous work [14] was directed to the users that want to run their own
legacy multiscale simulation that uses HLA on the Grid. In this paper we
have presented the idea of a HLA component model, which enables the user to
dynamically compose/decompose distributed simulations from multiscale ele-
ments residing on the Grid. We have also shown the architecture of the system

238 COREGRID SYMPOSIUM

supporting such model and build preliminary prototype of a HLA component
that stores simulation logic and makes possible to steer from outside its in-
teractions with other components. This approach differs from that in original
HLA, where all decisions about actual interactions are made by federates them-
selves. The functionality of the prototype is shown on the example of multiscale
simulation of a dense stellar system – MUSE environment [9]. The results of
the experiment show that that component layer does not introduce much over-
head. In the future we plan to fully design and implement other modules of the
presented support system.

Acknowledgments

The authors wish to thank Maciej Malawski for discussions on component
models and Simon Portegies Zwart for valuable discussions on MUSE. This
research was also partly funded EU IST Project CoreGRID and the Polish State
Committee for Scientific Research SPUB-M.

References

[1] R. Armstrong, G. Kumfert, L. C. McInnes, S. Parker, B. Allan, M. Sottile, T. Epperly,
and T. Dahlgren. The CCA component model for high-performance scientific computing.
Concurr. Comput. : Pract. Exper., 18(2):215–229, 2006.

[2] E. Bruneton, T. Coupaye, and J.-B. Stefani. Recursive and dynamic software composition
with sharing. In Proceedings of Seventh International Workshop on Component-Oriented
Programming, June 2002.

[3] X. Chen, W. Cai, S. J. Turner, Y. Wang: SOAr-DSGrid: Service-Oriented Architecture for
Distributed Simulation on the Grid. Principles of Advanced and Distributed Simulation
(PADS) 2006: 65-73

[4] The Distributed ASCI Supercomputer 3 web page http://www.cs.vu.nl/das3

[5] IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA),
2004. http://standards.ieee.org/catalog/olis/compsim.html.

[6] S. Krishnan and D. Gannon. XCAT3: A Framework for CCA Components as OGSA
Services. In Proc. Int. Workshop on High-Level Parallel Progr. Models and Supportive
Environments (HIPS), pp. 90–97, Santa Fe, NM, USA, 2004.

[7] D. Kurzyniec, T. Wrzosek, D. Drzewiecki, and V. S. Sunderam. Towards Self-Organizing
Distributed Computing Frameworks: The H2O Approach. Parallel Processing Letters,
13(2):273–290, 2003.

[8] M. Malawski, D. Kurzyniec, and V. S. Sunderam. MOCCA - Towards a Distributed CCA
Framework for Metacomputing. In 19th International Parallel andDistributedProcessing
Symposium (IPDPS2005), CD-ROM /Abstracts Proceedings, 4-8April 2005, Denver, CA,
USA, 2005.

[9] MUSE Web page http://muse.li/

[10] OASIS team: Proposals for a Grid Component Model CoreGRID project Technical report,
2004. http://www.coregrid.net

HLA Component Based Environment for Distributed Multiscale Simulations 239

[11] K. Pan, S.J. Turner, W. Cai and Z. Li: A Service Oriented HLA RTI on the Grid in:
Proceedings of IEEE International Conference on Web Services, 2007 - ICWS 2007, 9-13
July 2007, Salt Lake City, UT, pp. 984-992

[12] S.G. Parker. A Component-Based Architecture for Parallel Multi-physics PDE Sim ula-
tion. Future Generation Computer Systems, 22(1-2):204–216, 2006.

[13] ProActive project homepage. http://www-sop.inria.fr/oasis/ProActive/.

[14] K. Rycerz, M. Bubak, P.M.A. Sloot, V. Getov: Problem Solving Environment for Dis-
tributed Interactive Simulations in: S. Gorlatch, M. Bubak, and T. Priol (Eds). Achieve-
ments in European Reseach on Grid Systems. CoreGRID Integration Workshop 2006
Springer, 2008, pp 55 - 66.

[15] K.Rycerz, M. Bubak, P.M.A. Sloot Using HLA and Grid for Distributed Multiscale Simu-
lations Proceedings of International Conference of Parallel Processing and Applied Math-
ematics (PPAM’07), Gdansk, September 2007, LNCS (to appear).

[16] K.Rycerz, M. Bubak, P.M.A. Sloot Dynamic Interactions in HLA Component Model
for Multiscale Simulations. Proccedings of International Conference on Computational
Science, ICCS 2008. (to appear)

[17] Web Services. http://www.w3.org/2002/ws/.

[18] Web Services Resource Framework. http://www.globus.org/wsrf.

Author Index

Al-Shishtawy, Ahmad, 163
Aldinucci, Marco, 3, 31
Badia, Rosa M., 47
Baraglia, Ranieri, 175
Basso, Alessandro, 19
Battré, Dominic, 153
Bertolli, Carlo, 123
Bolotov, Alexander, 19
Brand, Per, 163
Brunner, Rene, 205
Bubak, Marian, 229
Caromel, Denis, 111
Chacin, Pablo, 205
Cosmin Silaghi, Gheorghe, 153
Danelutto, Marco, 3
Dazzi, Patrizio, 175
Djemame, Karim, 153
Ejdys, Michal, 47
Epema, Dick, 191
Fahringer, Thomas, 63, 191
Freitag, Felix, 205
Gabarro, Joaquim, 123
Getov, Vladimir, 19
Herman-Izycka, Ula, 47
Hovestadt, Matthias, 153
Höglund, Joel, 163
Iosup, Alexandru, 191
Jimenez, Javier Bustos, 111
Keller, Vincent, 63
Kielmann, Thilo, 47

Kilpatrick, Peter, 3
Kuzjurin, Nikolai, 77
Lal, Namita, 47
Leon, Xavier, 205
Leyton, Mario, 111
Li, Jiadao, 139
Massonet, Philippe, 153
Meneghin, Massimiliano, 123
Mouton, Stephane, 153
Nadeem, Farrukh, 63
Naqvi, Syed, 153
Navarro, Leandro, 205
Ostermann, Simon, 191
Panciatici, Antonio, 175
Parlavantzas, Nikos, 163
Pasquali, Marco, 175
Piquer, Jose Miguel, 111
Popov, Konstantin, 163
Prodan, Radu, 63, 191
Rycerz, Katarzyna, 229
Röblitz, Thomas, 93
Schwiegelshohn, Uwe, 77
Sloot, Peter M.A., 229
Tchernykh, Andrei, 77
Tejedor, Enric, 47
Tuosto, Emilio, 31
Vlassov, Vladimir, 163
Wäldrich, Oliver, 139
Yahyapour, Ramin, 77
Ziegler, Wolfgang, 139
Zoppi, Giorgio, 3

